Reverse Engineering of Experimental Tests Results of Ballistic Impact for the Validation of Finite Element Simulations

Author(s):  
Andrea Manes ◽  
Grazia Magrassi ◽  
Marco Giglio ◽  
Monica Bordegoni

In this paper the set up and the carrying out of experimental ballistic tests on a tail rotor transmission shafts for helicopter, which are impacted by a 7.62 NATO projectile, are presented. After the tests, a 3D acquisition of the impacted area on each shaft has been performed in order to acquire exactly the shape of the damage. The acquisition has been carried out with a 3D range camera. The experimental activities have been compared with the results of a numerical simulation of the impact, which has been computed with an explicit finite element code. The direct comparison has been done by superimposing the two meshes (from FE analysis and from 3D acquisition). This method has proved to be effective for identifying analogies and differences and for giving the possibility to promote a “quantitative” discussion with the aim of improving the accuracy of the numerical models and simulation conditions. The adoption of the Reverse Engineering practice has proved to be a powerful method for integrating and comparing the simulation data with real data, and give suggestions to further analysis.

2011 ◽  
Vol 82 ◽  
pp. 710-715 ◽  
Author(s):  
Davide Lumassi ◽  
Andrea Manes ◽  
Marco Giglio

Actual strategies and rules in peace keeping mission have led to an intensive use of helicopters exposing the aircraft and the crew to significant risks. Typical missions in fact involve low altitude flights in hostile environment where many threats can cause severe damages, leading eventually to the loss of the machine and the crew. According to this scenario, the tail rotor power transmission is one of the most critical components for its fundamental role to ensure flight stability and for its vulnerability, being very exposed during flight manoeuvre. In addition light weapons are wide spread, due to their cheapness and manoeuvrability. So the impact of 7.62x61 NATO ball 9.5 g bullet is an event anything but remote. This projectile is a full metal jacket bullet, with a brass jacket and a lead alloy core. Due to its mechanical characteristics, the soft lead core undergoes to high deformations and failures (mushroom and debris) during the impact, causing a large and extensive damaged area. Several researches have been developed to investigate the ballistic impact of conventional bullet against typical thin and lightweight aeronautical structure. As usual in this field, a complete methodology with experimental tests and numerical approaches has been carried on. In particular Finite Element analyses, although require complicate calibrations and validation which can be only made through indispensable experimental tests, represent a key resource. Very detailed numerical models are an extremely powerful tool to investigate the damage generated during an impact and allow simulating complex and extreme cases. With this premises direct impact between a 7.62x51 NATO ball 9.5 g bullet with a tube simulating an Helicopter drive shaft has been investigated by the authors in a previous work both with experimental and numerical activities with good agreement. However, considering the huge effect of bullet deformation verified during this activity, the modification of the bullet due to a preliminary impact with the surrounding frame (around the shaft in the real helicopter) could influence in a remarkable way the damage shape and extension in the shaft. This is an issue that is worth to further investigation and this is the aim of this paper. Basing only on a numerical procedure, previously assessed, an investigation of the impact of a NATO 7.62x51 mm ball 9.5 g bullet into an Al-6061-T6 pipe and its protection is presented. In particular the work will focus on the influence of the frame panel, which covers the transmission shaft, on the impact conditions. Analysis are carried out using the Finite Element commercial code ABAQUS/Explicit. Advanced materials’ descriptions, constitutive law and fracture criterion are introduced within the numerical model of the shaft and protection; projectile has been modelled as deformable body. Different impact conditions have also been tested in order to identify the worst impact condition.


2021 ◽  
Author(s):  
Qiang Zhong ◽  
De-yu Wang

Abstract Dynamic capacity is totally different from quasi-static capacity of ship structural components, although most ultimate strength analyses at present by researchers are performed under quasi-static conditions. To investigate the dynamic ultimate strength characteristics, the dynamic ultimate strength analyses of stiffened plates subjected to impact load were studied based on a 3-D nonlinear explicit finite element method (FEM) in this paper. The impact load in the present work is characterized as a half-sine function. A series of nonlinear finite element analyses are carried out using Budiansky-Roth (B-R) criterion. The influence of impact durations, model ranges, boundary conditions, initial imperfections and impact loads on the dynamic ultimate strength of stiffened plates are discussed. In addition, the ultimate strength of stiffened plates under the in-plane impact combined with lateral pressure was also calculated, which shows lateral pressure has a negligible effect on the dynamic ultimate strength of stiffened plates subjected to the impact load with short durations. Other important conclusions can be obtained from this paper, which are useful insights for the development of ultimate strength theory of ship structures and lay a good foundation for the study of dynamic ultimate strength in the future.


2011 ◽  
Vol 148-149 ◽  
pp. 1319-1322
Author(s):  
Xiao Hu ◽  
Yi Sheng Zhang ◽  
Hong Qing Li ◽  
De Qun Li

Blow forming process of plastic sheets is simple and easy to realize, thus, it is widely used for plastic thin-wall parts. In the practical production, an effective method is needed for the preliminary set-up of process parameters in order to achieve accurate control of thickness distribution. Thus, a finite element method (FEM) code is used to simulate blow forming process. For better description of complex material theological characteristics, a physically based viscoelastic model (VUMAT forms Buckley model) to model the complex constitutive behavior is used. Nonlinear FE analyses using ABAQUS were carried out to simulate the blow forming process of plastic cups. The actual values at different locations show a satisfactory agreement with the simulation results: as a matter of fact the error along the cell mid-section did not exceed 0.02 mm on average, corresponding to 5% of the initial thickness, thus the FE model this paper can meet the requirements of the engineering practice.


2019 ◽  
Vol 827 ◽  
pp. 19-24 ◽  
Author(s):  
Donato Perfetto ◽  
Giuseppe Lamanna ◽  
M. Manzo ◽  
A. Chiariello ◽  
F. di Caprio ◽  
...  

In the case of catastrophic events, such as an emergency landing, the fuselage structure is demanded to absorb most of the impact energy preserving, at the same time, a survivable space for the passengers. Moreover, the increasing trend of using composites in the aerospace field is pushing the investigation on the passive safety capabilities of such structures in order to get compliance with regulations and crashworthiness requirements. This paper deals with the development of a numerical model, based on the explicit finite element (FE) method, aimed to investigate the energy absorption capability of a full-scale 95% composite made fuselage section of a civil aircraft. A vertical drop test, performed at the Italian Aerospace Research Centre (CIRA), carried out from a height of 14 feet so to achieve a ground contact velocity of 30 feet/s in according to the FAR/CS 25, has been used to assess the prediction capabilities of the developed FE method, allowing verifying the response under dynamic load condition and the energy absorption capabilities of the designed structure. An established finite element model could be used to define the reliable crashworthiness design strategy to improve the survival chance of the passengers in events such as the investigated one.


Author(s):  
P Hosseini-Tehrani ◽  
S Pirmohammad ◽  
M Golmohammadi

In this work, several antisymmetric tapered tubes with an inner stiffener under axial and oblique loading are studied and optimum dimensions of the tapered tube are derived from a crashworthiness point of view. The importance of detecting these dimensions is optimizing the weight while the crashworthiness of tube is not damaged. By using an internal stiffener, crashworthiness is improved against oblique loads, and the sensitivity of tubes with respect to oblique loads and bending deformation is diminished. The numerical models have been developed using the explicit finite element code LS-DYNA. The crashworthiness of the optimized tapered tube is compared with that of an octagonal-cross-section tube which is known as the best energy absorber model in the literature. It is shown that an optimized tapered tube has an average of 29.3 per cent less crushing displacement in comparison with octagonal-section tube when both tubes have the same weights and the same peaks of crushing load. Finally, the orientation of loading is changed and the best orientation is proposed.


2018 ◽  
Vol 18 (2) ◽  
pp. 121-129 ◽  
Author(s):  
Jerry Ochola ◽  
Benny Malengier ◽  
Lode Daelemans ◽  
John Githaiga ◽  
Lieva Van Langenhove

AbstractThis paper presents the experimental and numerical analysis of the potential of a braided fabric for flexor tendon repair. Numerical models of tubular braided fabrics were generated using a python script interface and imported into ABAQUS®while Flexor tendon models were represented as silicone rubber rods. Experimental tests and Finite Element Modelling (FEM) of the flexor tendon repair was undertaken by deploying two tendon ends from opposite sides of a tubular braided fabric. This was done such that the tendon ends meet at the midpoint within the fabric. The tendons were tightly held to emulate a realistic repaired tendon. A displacement driven uniaxial loading was induced on the tendon-fabric assembly sufficient to cause a 2mm gap between the tendon ends. Numerical analysis of the repair potential of a braided fabric in tendon repair was done by analyzing selected fabric parameters that were crucial in tendon repair applications. The results show that changing the parameters of the braided fabrics significantly affected the potential of the fabrics during tendon repair.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1417-1422
Author(s):  
SEUNG-YONG YANG ◽  
SEUNG-KYU CHOI ◽  
NOHYU KIM

To participate in Student Formula Society of Automotive Engineers (SAE) competitions, it is necessary to build an impact attenuator that would give an average deceleration not to exceed 20g when it runs into a rigid wall. Students can use numerical simulations or experimental test data to show that their car satisfies this safety requirement. A student group to study formula cars at the Korea University of Technology and Education has designed a vehicle to take part in a SAE competition, and a honeycomb structure was adopted as the impact attenuator. In this paper, finite element calculations were carried out to investigate the dynamic behavior of the honeycomb attenuator. Deceleration and deformation behaviors were studied. Effect of the yield strength was checked by comparing the numerical results. ABAQUS/Explicit finite element code was used.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7658
Author(s):  
Marcin Kozłowski ◽  
Kinga Zemła ◽  
Magda Kosmal ◽  
Ołeksij Kopyłow

Due to the high cost of experiments commonly performed to verify the resistance of glass elements to impact loads, numerical models are used as an alternative to physical testing. In these, accurate material parameters are crucial for a realistic prediction of the behaviour of glass panels subjected to impact loads. This applies in particular to the glass’s strength, which is strictly dependent on the strain rate. The article reports the results of an extensive experimental campaign, in which 185 simply supported toughened glass samples were subjected to hard-body impacts. The study covers a wide range of glass thicknesses (from 5 to 15 mm), and it aims to determine a critical drop height causing fracture of the glass. Moreover, a 3D numerical model of the experimental set-up was developed to reproduce the experiments numerically and retrospectively to determine the peak stress in glass that developed during the impact. Based on the results of numerical simulations, a load duration factor of 1.40 for toughened glass for impact loads is proposed. In addition, the paper includes a case study to demonstrate the use of the modelling methodology and results of the work on a practical example of an internal glass partition wall.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Dung Nguyen Thai ◽  
Phung Van Minh ◽  
Cuong Phan Hoang ◽  
Tam Ta Duc ◽  
Nhung Nguyen Thi Cam ◽  
...  

This paper carries out the static bending analysis of symmetric three-layer functionally graded sandwich beams, in which each layer is made from different functionally graded materials, and they are connected by shear connectors due to sliding movement. The finite element formulations are based on Timoshenko’s first-order shear deformation beam theory (FSDT) and the finite element method to establish the equilibrium equation of beams. The calculation program is coded in the MATLAB environment, and then verification examples are given out to compare the numerical data of present work with those of exact open sources. The impact of several geometrical and material parameters on the mechanical response of the structure, such as the height-to-length ratio, boundary conditions, volume fraction index, and especially the shear coefficient of connectors, is being explored. When designing and using these types of structures in engineering practice, the computed results can be utilized as a valid reference.


2013 ◽  
Vol 778 ◽  
pp. 526-533 ◽  
Author(s):  
Natalie Quinn ◽  
Dina D’Ayala

Peru is one of the most seismically active countries in the world, this fact highlighted by several destructive earthquakes in recent years. The centre of Lima has a large number of historic structures with a ground floor in adobe, and their upper storeys in quincha, a traditional technique consisting of a timber frame with an infill of canes and mud. Despite the existence of a large number of buildings containing this technique, very little is known about its seismic performance. In order to investigate this, a series of experimental tests on quincha frames, with and without the infill, have been carried out previously, with the aim of quantifying the lateral behaviour and identifying vulnerable areas. The present paper details work carried out to develop a finite element model of the test frames without infill. This model of the timber frame will enable an accurate representation of the frame behaviour to be developed before adding the infill of canes and mud to the model. As the behaviour of the infill material and its connection to the frame is difficult to determine, characterising the timber frame with a high degree of accuracy ensures that the contribution of the infill can be globally quantified from the overall experimental results. The beams and posts are connected by cylindrical mortice and tenon joints, with a diagonal bracing member providing some lateral restraint. The connections have been modelled semi-rigid springs, with the stiffness calculated using variations of the component method. This was found to give very similar results to those obtained experimentally.


Sign in / Sign up

Export Citation Format

Share Document