Separable Polyurethane Solid Tires for a Folding Bike

Author(s):  
Sarom Ryu ◽  
Jaehyung Ju ◽  
Doo-Man Kim ◽  
Hyeonu Heo

With increasing awareness of energy depletion and environmental pollution, bikes have been paid more attention as an important transportation tool. Folding or separable part design of a bike may increase a use of bikes due to its portable capability. In this study, we suggest a novel separable solid bike tire for a folding bike use. Finite element model with ABAQUS is used to model a polyurethane (PU) separable solid tire. Vertical stiffness and contact pressure are compared with those of a conventional pneumatic bike tire. Elliptical hollow cross-sections of a PU solid tire are investigated to match a vertical stiffness and contact pressure of a conventional pneumatic bike tire. The suggested PU solid tire with an elliptical hollow cross-section shows a lower contact pressure than a pneumatic bike tire when they are designed to be the same load carrying capability.

Author(s):  
Kai Jokinen ◽  
Erno Keskinen ◽  
Marko Jorkama ◽  
Wolfgang Seemann

In roll balancing the behaviour of the roll can be studied either experimentally with trial weights or, if the roll dimensions are known, analytically by forming a model of the roll to solve response to imbalance. Essential focus in roll balancing is to find the correct amount and placing for the balancing mass or masses. If this selection is done analytically the roll model used in calculations has significant effect to the balancing result. In this paper three different analytic methods are compared. In first method the mode shapes of the roll are defined piece wisely. The roll is divided in to five parts having different cross sections, two shafts, two roll ends and a shell tube of the roll. Two boundary conditions are found for both supports of the roll and four combining equations are written to the interfaces of different roll parts. Totally 20 equations are established to solve the natural frequencies and to form the mode shapes of the non-uniform roll. In second model the flexibility of shafts and the stiffness of the roll ends are added to the support stiffness as serial springs and the roll is modelled as a one flexibly supported beam having constant cross section. Finally the responses to imbalance of previous models are compared to finite element model using beam elements. Benefits and limitations of each three model are then discussed.


1994 ◽  
Vol 116 (1) ◽  
pp. 14-20 ◽  
Author(s):  
T. T. Le ◽  
R. H. Knapp

A new two-dimensional finite element model is proposed for the deformation analysis of cable cross sections. The deformations of the cable cross section are of considerable design interest because of their effect on the induced torque or rotation of the cable. This model accounts for material orthotropy and nonsymmetrical geometry and loads. Each component of the cable is assumed to possess a circular cross section and is modeled as a macro-element having nodal degrees-of-freedom at all contact points with adjoining components. Usual finite element procedures are applied to solve for the unknown displacements at contact nodal points. The model is implemented in a computer code and is verified by test results obtained for an as-built cable.


2020 ◽  
Vol 90 (17-18) ◽  
pp. 1962-1973
Author(s):  
Yinglei Lin ◽  
Yi Li ◽  
Lei Yao ◽  
Guoru Zhao ◽  
Lei Wang

Knee flexion behavior alters the contact pressure distribution exerted by compression devices during exercise. This study aimed to develop a three-dimensional dynamic finite element model of the lower limb with detailed bony structures, wearing a compression device with higher pressure over the calf, and then to quantify and compare the garment–body interface contact pressure and the cross-section pressure gradient deviation in standing and deep knee flexion postures (30°, 60°, 90°, and 120° of knee flexion). Contact pressure experiment on seven muscle points was applied to validate the model. The cross-section pressure gradient deviation was calculated on landmarks based on deviation along the four axial pathways from the average cross-section pressure gradients. In general, the results demonstrated that the whole pressure profile gradually decreased from the ankle to the thigh with higher compression on the calf in a standing position. Cross-section pressure gradient deviation resulted in a dramatic increase of ∼100% and ∼110% on positions B1 and D on the anterior of calf at 60° flexion, respectively, which resembled an M shape. This phenomenon was caused by the combination of the stretch of clothing during knee flexion, high compression over the calf, and the shape of the lower limb. This finite element model and its findings together could help us to understand the compression effects of sports lower limb devices and garments to enhance walking and running performance, and help to improve the design concepts.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


2019 ◽  
Vol 71 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Shixian Xu ◽  
Zhengtao Su ◽  
Jian Wu

Purpose This paper aims to research the influence of pressure, friction factors, roughness and actuating speed to the mixed lubrication models of outstroke and instroke. Design/methodology/approach Mixed lubrication model is solved by finite volume method, which consists of coupled fluid mechanics, deformation mechanics and contact mechanics analyses. The influence of friction factor on the finite element model is also considered. Then, contact pressure, film thickness, friction and leakage have been studied. Findings It was found that the amount of leakage is sensitive to the film thickness. The larger the film thickness is, the greater the influence received from the friction factor, however, the effect of oil film on the friction is negligible. The friction is determined mainly by the contact pressure. The trend of friction and leakage influenced by actuating velocity and roughness is also obtained. Originality/value The influence of friction factor on the finite element model is considered. This can make the calculation more accurate.


2020 ◽  
Vol 299 ◽  
pp. 1184-1189
Author(s):  
V.V. Zhukov ◽  
Anton V. Eremin ◽  
D.V. Stepanec

In this article, the object of study is a three–layer honeycomb panel with fixing elements (FE), which are used for transporting the panel, and fixing it to the spacecraft. The goal of the work is to determine experimentally the load carrying capacity of the fixing elements under various types of loading, to determine the load carrying capacity of the honeycomb panel of the spacecraft at fixing points and further comparison of the experimental results with the finite element method results calculated by MSC.Patran / Nastran. A method for conducting static tests of fixing elements of a spacecraft honeycomb panel under an external load is described, a description of computer technology of a finite–element solution to the problem of static strength of a honeycomb panel structure in the MSC.Patran environment is presented, and a finite–element model of a honeycomb panel is designed. An assessment of the strength of a three–layer structure at fixing points was carried out, followed by validation of the finite–element model of a honeycomb panel. On the basis of the validated model, the evaluation of the strength of the honeycomb structure was carried out; based on results obtained, the conclusion has been made about the convergence of the results by the finite element method with the results obtained during the experiment.


Author(s):  
Laura Galuppi ◽  
Gianni Royer-Carfagni

Prandtl's membrane analogy for the torsion problem of prismatic homogeneous bars is extended to multi-material cross sections. The linear elastic problem is governed by the same equations describing the deformation of an inflated membrane, differently tensioned in regions that correspond to the domains hosting different materials in the bar cross section, in a way proportional to the inverse of the material shear modulus. Multi-connected cross sections correspond to materials with vanishing stiffness inside the holes, implying infinite tension in the corresponding portions of the membrane. To define the interface constrains that allow to apply such a state of prestress to the membrane, a physical apparatus is proposed, which can be numerically modelled with a two-dimensional mesh implementable in commercial finite-element model codes. This approach presents noteworthy advantages with respect to the three-dimensional modelling of the twisted bar.


Author(s):  
FA de Castro ◽  
Paulo P Kenedi ◽  
LL Vignoli ◽  
I I T Riagusoff

Metallic hyperstatic structures, like beams, submitted to excessive loads, do not fail completely before fully yielding in more than one cross section. Indeed, for built-in beams, three cross sections must be fully yielded before the final failure can occur. So, modeling the evolution of the cross-section residual stress distribution is an important subject that should be addressed to guarantee the stress analysis modeling correctness. This paper analyses the residual stress distribution evolution, in critical cross sections, of built-in beams during a transversal concentrated load growth, until the final failure through hinges formation. A finite element model is also presented. The results show good matches with the numerical model, used as a reference.


Author(s):  
Mahdi A. Allam ◽  
Andre Bazergui ◽  
Luc Marchand ◽  
Michel Derenne

Service reliability and durability of tubular heat exchangers and steam generators are much dependent on the proper response of the tube-to-tubesheet joints to the operating conditions. In this paper a 2-D axisymmetric finite element model is proposed and compared to a 3-D finite element solution for the purpose of predicting the temperature effect on the residual contact pressure and maximum tensile residual stresses of such joints. A parametric study using the finite element results shows that, although thermal loading and temperature cycling have a negligible effect on the maximum tensile residual stresses, the room-temperature initial residual contact pressure may be completely relieved following the initiation of plastic deformation in either the tube or the tubesheet during thermal loading. A comparison between the results of the proposed finite element model and those obtained from the literature shows good agreement. A simplified analytical approach, which may be used for the design of tube-to-tubesheet joints, is also proposed to predict the joint behavior at the operating conditions.


Sign in / Sign up

Export Citation Format

Share Document