Stability Control for Tire Blowout Vehicle Based on Brake by Wire System Considering Driver Operation

Author(s):  
Liangyao Yu ◽  
Zhizhong Wang ◽  
Ning Pan ◽  
Lei Zhang ◽  
Jian Song

Tire blowout is one of the most dangerous tire malfunctions which could result in severe property damage, personal injury, even loss of life. In the existing literatures, active tire blowout fail-safe control strategies based on rules or optimal control have been proposed. However, little attention has been put on driver behavior, which plays an important role in the stability performance control when tire blowout is experienced. Because of the uncertainties of failure mode and failure level, most of existing active control strategies are not easy to be implemented. This paper presents the research work on stability control for tire blowout vehicle, considering the driver behavior at the emergent scenario. The Electro Hydraulic Brake (EHB) based Brake by Wire (BBW) system is used as the brake system, which can regulate the wheel brake force individually and accurately. The simulation results show that stability and brake efficiency can be achieved in tire blowout fail-safe control by combining the driver operation model and BBW.

Author(s):  
Liangyao Yu ◽  
Changxi You ◽  
Jian Song

With the introduction and development of Anti-lock Braking System in modern vehicles, remarkable progress in brake efficiency and brake stability has been achieved. However, it is a significant challenge to deal with the control law in certain critical situations, especially on split-μ road surface. In low vehicle velocity, as some standards and regulations specified, the stability in such situation is comparably easy to be achieved. But with the vehicle velocity increasing, the driver behavior contributes a large impact on the trajectory maintenance and easily causes sympathetic vibration of the vehicle because of the unexpected synchronization between the driver input and control law output, which could be very dangerous. This paper presents the research work in vehicle stability control when Anti-lock Braking System is activated at split-μ road surface. The principal contribution of this work is that the driver behavior is taken into account and the control law is tuned to adapt to this situation, which effectively maintains the stability of the vehicle without compromising the brake efficiency.


2013 ◽  
Vol 437 ◽  
pp. 669-673 ◽  
Author(s):  
Peng Fei Yang ◽  
Lu Xiong ◽  
Zhuo Ping Yu

Design the stability control strategy of four in-wheel-motors drive electric vehicle (EV) based on control allocation. Two kinds of control allocation methods are designed in this paper, one is the quadratic programming (QP), and the other is a simplified optimization method (SOM). Comparing and evaluating the control strategies through the co-simulation with MATLAB software and CARSIM software. The results of the simulation show: both strategies could stabilize the vehicle posture well under critical condition. QP has more accuracy than SOM, and could rebuild the system automatically when the motor fails. But the SOM doesn’t need iteration, could be possible to use in the real vehicle.


Author(s):  
Liangyao Yu ◽  
Lanie Abi ◽  
Zhenghong Lu ◽  
Yaqi Dai

Abstract The steer-by-wire (SBW) system eliminates the mechanical connection between the steering wheel and the carriage wheel. It eliminates various limitations of the traditional steering system, so that the steering ratio of the car can be freely designed and the steering by wire system can achieve good active front wheel steering (AFS) function. In the study of the stability control of vehicles on the μ-split road, there are mainly two methods, one based on vehicle trajectory maintenance and the other based on vehicle dynamic stability control. Both of these control methods have delays, which is not conducive to the trajectory flowing ability of the vehicle when driving on the μ-split road. A shared control strategy is proposed to improve the vehicle’s stability. The purpose of this study is to establish different variable transmission ratio characteristic curves according to the different input signals of the driver and the vehicle, such as angular change speed, steering wheel angle, etc. Based on these conditions, a new model combining driver’s intention with vehicle dynamic model is established, so as to achieve the purpose of judging the stability of vehicle in advance, to reduce the delay time of control and to improve the response speed, which will improve the stability performance of the vehicle.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Bing Zhu ◽  
Yizhou Chen ◽  
Jian Zhao

An integrated chassis control (ICC) system with active front steering (AFS) and yaw stability control (YSC) is introduced in this paper. The proposed ICC algorithm uses the improved Inverse Nyquist Array (INA) method based on a 2-degree-of-freedom (DOF) planar vehicle reference model to decouple the plant dynamics under different frequency bands, and the change of velocity and cornering stiffness were considered to calculate the analytical solution in the precompensator design so that the INA based algorithm runs well and fast on the nonlinear vehicle system. The stability of the system is guaranteed by dynamic compensator together with a proposed PI feedback controller. After the response analysis of the system on frequency domain and time domain, simulations under step steering maneuver were carried out using a 2-DOF vehicle model and a 14-DOF vehicle model by Matlab/Simulink. The results show that the system is decoupled and the vehicle handling and stability performance are significantly improved by the proposed method.


2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Kun Yang ◽  
Danxiu Dong ◽  
Chao Ma ◽  
Zhaoxian Tian ◽  
Yile Chang ◽  
...  

Tire longitudinal forces of electrics vehicle with four in-wheel-motors can be adjusted independently. This provides advantages for its stability control. In this paper, an electric vehicle with four in-wheel-motors is taken as the research object. Considering key factors such as vehicle velocity and road adhesion coefficient, the criterion of vehicle stability is studied, based on phase plane of sideslip angle and sideslip-angle rate. To solve the problem that the sideslip angle of vehicles is difficult to measure, an algorithm for estimating the sideslip angle based on extended Kalman filter is designed. The control method for vehicle yaw moment based on sliding-mode control and the distribution method for wheel driving/braking torque are proposed. The distribution method takes the minimum sum of the square for wheel load rate as the optimization objective. Based on Matlab/Simulink and Carsim, a cosimulation model for the stability control of electric vehicles with four in-wheel-motors is built. The accuracy of the proposed stability criterion, the algorithm for estimating the sideslip angle and the wheel torque control method are verified. The relevant research can provide some reference for the development of the stability control for electric vehicles with four in-wheel-motors.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Bing Zhu ◽  
Yizhou Chen ◽  
Jian Zhao ◽  
Yunfu Su

An integrated vehicle chassis control strategy with driver behavior identification is introduced in this paper. In order to identify the different types of driver behavior characteristics, a driver behavior signals acquisition system was established using the dSPACE real-time simulation platform, and the driver inputs of 30 test drivers were collected under the double lane change test condition. Then, driver behavior characteristics were analyzed and identified based on the preview optimal curvature model through genetic algorithm and neural network method. Using it as a base, an integrated chassis control strategy with active front steering (AFS) and direct yaw moment control (DYC) considering driver characteristics was established by model predictive control (MPC) method. Finally, simulations were carried out to verify the control strategy by CarSim and MATLAB/Simulink. The results show that the proposed method enables the control system to adjust its parameters according to the driver behavior identification results and the vehicle handling and stability performance are significantly improved.


2013 ◽  
Vol 859 ◽  
pp. 222-227
Author(s):  
Hong Jun Liu ◽  
Jin Hua Tan ◽  
Xue Wen Su ◽  
Hao Wu

Two typical monitoring sections are selected for obtaining the change law of the surface subsidence and the settlement after construction of soft soil foundations, and determining the reasonable unloading time. The research results show that the surface settlement rate is large during the filling stage, the rate decreases after the loading and gradually stabilized. The embankment midline settlement is larger than the settlement of the road shoulder which is concluded from the fact that the subsidence of the middle settlement plate is larger than those of the left and right plate. The surface subsidence rate is less than 5mm per month during the two month before unloading according to the data in the tables. The settlement after construction presumed from the middle plate is more significantly larger than that of left and right sides, hence, as the unloading basis of preloading drainage method in soft soil foundation treatment the settlement after construction which is calculated from the midline monitoring data of the road is appropriate. After 6 months the calculated post-construction settlements of the two sections are in the scope of the design requirement since they decrease with preloading time. The reliable basis is provided for the future design and construction of soft foundation in this area through the research results.


2000 ◽  
Author(s):  
Ohseop Song ◽  
Liviu Librescu ◽  
Nam-Heui Jeong

Abstract Within this paper problems related with the vibration and stability control of circular flexible shafts spinning about their rotational axis are addressed. Due to the occurrence, as a result of the spinning speed, of gyroscopic forces in the system, the rotating shaft can experience, in some conditions, instabilities of the same nature as any nonconservative system, namely divergence and flutter instabilities. Whereas the former instability is of a static character, the latter one is of dynamic character and the results of its occurrence are catastrophic. By including collocated sending and actuating capabilities via integration in the system of piezoelectric devices and of a feedback control law, it is shown that a dramatic enhancement of both the free dynamic response and of the stability behavior from both the divergence and flutter points of view can be achieved. This implies that via the implementation of this technology an increase of the spinning speed can be achieved without the occurrence of these instabilities. Numerical simulations documenting these findings are provided and pertinent conclusions are outlined. It is also worthy to mention that the shaft is modeled as a thin-walled cylinder made of an anisotropic material and incorporating a number of non-classical features.


Sign in / Sign up

Export Citation Format

Share Document