Kinematic Analysis and Dimensional Synthesis of a New 2R1T Parallel Kinematic Machine

Author(s):  
Lingmin Xu ◽  
Xubiao Zhu ◽  
Wei Ye ◽  
Qinchuan Li ◽  
Qiaohong Chen

This paper deals with the kinematic analysis and dimensional synthesis of a new 2R1T (R: rotation, T: translation) parallel kinematic machine (PKM). This is a 2PRU-UPR (P, R, U standing for prismatic, revolute and universal joint, respectively) PKM that is actuated by three actuated prismatic joints, two of which are mounted on the fixed base to reduce the movable mass. Firstly, the mobility and inverse kinematics of the 2PRU-UPR PKM are proposed. And then the motion/force transmissibility is evaluated by the local transmission index and good transmission workspace. Moreover, the singular configurations are obtained according to the motion/force transmissibility. Dimensional synthesis is carried out based on the GTW, and the optimized architectural parameters with good GTW are obtained. Finally, a prototype based on the optimized parameters has been developed, which has great potential in machining workpieces with curved surfaces.

Robotica ◽  
2018 ◽  
Vol 37 (2) ◽  
pp. 358-377 ◽  
Author(s):  
Lingmin Xu ◽  
Genliang Chen ◽  
Wei Ye ◽  
Qinchuan Li

SUMMARYPMs with two rotations and one translation (2R1T) have been used as skeletons in various advanced manufacturing equipment where high accuracy and stiffness are basic requirements. Considering the advantages of redundant actuation and overconstrained structure, such as reduced singularities and improved stiffness, a new 2R1T overconstrained PM with actuation redundancy, called Hex4, is proposed in this paper. This is a 2-PUR/2-RPU PM (wherePdenotes an actuated prismatic joint, U a universal joint, and R a revolute joint) that is actuated by four prismatic joints. Compared with some existing 2R1T overconstrained PMs with actuation redundancy, the main advantage of the proposed PM is that the heavy motors of two limbs are mounted on the base to reduce the movable mass and improve dynamic response. First, mobility analysis, inverse kinematics, and velocity analysis are presented. Then, the local transmission index and good transmission workspace are used to evaluate the motion/force transmissibility of the Hex4 PM. The variation tendencies of the two indices with different link parameters are investigated. The singularity is then discussed by considering the motion/force transmissibility. Finally, link parameters are optimized to obtain an improved good transmission workspace. It is shown that the proposed PM has a good potential for high precision applications.


2019 ◽  
Vol 11 (3) ◽  
Author(s):  
Lingmin Xu ◽  
Xinxue Chai ◽  
Qinchuan Li ◽  
Liangan Zhang ◽  
Wei Ye

Two rotations and one translation (2R1T) parallel kinematic machines (PKMs) are suitable for the machining of complex curved surfaces, which requires high speed and precision. To further improve rigidity, precision, and avoid singularity, actuation redundancy, and overconstrained PKMs with fixed actuators and limited-degrees of freedom (DOF) limbs are preferred. However, there are few 2R1T PKMs with these features. This paper introduces a new 2R1T overconstrained PKM with actuation redundancy, which is called Tex4. The Tex4 PKM consists of four limited-DOF limbs; that is, two PUR limbs and two 2PRU limbs (where P denotes an actuated prismatic joint, U denotes a universal joint, and R denotes a revolute joint). The kinematic model of the proposed 2PUR-2PRU machine is presented along with the results of mobility, inverse kinematics, and velocity analysis. By considering the motion/force transmissibility, the dimensional parameters of the Tex4 PKM were optimized to obtain an improved satisfactory transmission workspace without singular configurations. Finally, a prototype based on the optimized parameters was fabricated, and its feasibility and accuracy were validated by motion and position error experiments. The Tex4 PKM has the advantages of high rigidity, simple kinematic model, and zero singularity in the workspace, which suggests that it has potential for use in the high-speed machining of curved surfaces.


2015 ◽  
Vol 7 (4) ◽  
Author(s):  
Y. Jin ◽  
Z. M. Bi ◽  
H. T. Liu ◽  
C. Higgins ◽  
M. Price ◽  
...  

A parallel kinematic machine (PKM) topology can only give its best performance when its geometrical parameters are optimized. In this paper, dimensional synthesis of a newly developed PKM is presented for the first time. An optimization method is developed with the objective to maximize both workspace volume and global dexterity of the PKM. Results show that the method can effectively identify design parameter changes under different weighted objectives. The PKM with optimized dimensions has a large workspace to footprint ratio and a large well-conditioned workspace, hence justifies its suitability for large volume machining.


Author(s):  
S. Caro ◽  
D. Chablat ◽  
P. Lemoine ◽  
P. Wenger

The subject of this paper is about the kinematic analysis and the trajectory planning of the Orthoglide 5-axis. The Orthoglide 5-axis a five degrees of freedom parallel kinematic machine developed at IRCCyN and is made up of a hybrid architecture, namely, a three degrees of freedom translational parallel manipulator mounted in series with a two degrees of freedom parallel spherical wrist. The simpler the kinematic modeling of the Orthoglide 5-axis, the higher the maximum frequency of its control loop. Indeed, the control loop of a parallel kinematic machine should be computed with a high frequency, i.e., higher than 1.5 MHz, in order the manipulator to be able to reach high speed motions with a good accuracy. Accordingly, the direct and inverse kinematic models of the Orthoglide 5-axis, its inverse kinematic Jacobian matrix and the first derivative of the latter with respect to time are expressed in this paper. It appears that the kinematic model of the manipulator under study can be written in a quadratic form due to the hybrid architecture of the Orthoglide 5-axis. As illustrative examples, the profiles of the actuated joint angles (lengths), velocities and accelerations that are used in the control loop of the robot are traced for two test trajectories.


Robotica ◽  
2021 ◽  
pp. 1-21
Author(s):  
Sachin Kansal ◽  
Sudipto Mukherjee

SUMMARY This paper proposes a vision-based kinematic analysis and kinematic parameters identification of the proposed architecture, designed to perform the object catching in the real-time scenario. For performing the inverse kinematics, precise estimation of the link lengths and other parameters needs to be present. Kinematic identification of Delta based upon Model10 implicit model with ten parameters using the iterative least square method is implemented. The loop closure implicit equations have been modelled. In this paper, a vision-based kinematic analysis of the Delta robots to do the catching is discussed. A predefined library of ArUco is used to get a unique solution of the kinematics of the moving platform with respect to the fixed base. The re-projection error while doing the calibration in the vision sensor module is 0.10 pixels. Proposed architecture interfaced with the hardware using the PID controller. Encoders are quadrature and have a resolution of 0.15 degrees embedded in the experimental setup to make the system closed-loop (acting as feedback unit).


Author(s):  
Ste´phane Caro ◽  
Philippe Wenger ◽  
Fouad Bennis ◽  
Damien Chablat

This paper presents a sensitivity analysis of the Orthoglide, a 3-DOF translational Parallel Kinematic Machine. Two complementary methods are used to analyze its sensitivity to its dimensional and angular variations. First, a linkage kinematic analysis method is used to have a rough idea of the influence of the dimensional variations on the location of the end-effector, and shows that the variations in design parameters of the same type from one leg to another one have the same influence on the end-effector. However, this method does not allow the designer to know the influence of the variations in the parallelograms. Thus, a differential vector method is used to study the influence of the dimensional and angular variations in the parts of the manipulator, and particularly the variations in the parallelograms, on the position and orientation of the end-effector. It turns out that the isotropic kinematic configuration of the manipulator is the least sensitive one to its geometrical variations, contrary to the closest configurations to its kinematic singular configurations, which are the most sensitive to geometrical variations.


Author(s):  
T-H Chang ◽  
S-L Chen ◽  
C-A Kang ◽  
I Inasaki

The parallel kinematic machine tool has many advantages including excellent loading capacity, high structural stiffness and small accumulated error of linkage. It has become one of the most important research fields for machine tools. In the present research, a principle for the optimization of the dimensional design parameters of a parallel kinematic machine tool is proposed. A five-degree-of-freedom (5DOF) parallel kinematic machine tool with a TRR-XY hybrid mechanism is chosen for investigating the design procedures and the optimization results. The inverse kinematics of the hybrid mechanism is first investigated. Then, the inverse solution is used to analyse and create the workspaces of the machine tool. The design parameters of the mechanical components are further optimized for constructing the maximum workspace.


2010 ◽  
Vol 102-104 ◽  
pp. 363-367
Author(s):  
Bin Cheng Li ◽  
Dan Yang ◽  
Rong Zhi Lu

This paper obtained the inverse kinematics model through performing kinematic analysis of 6-DOF parallel kinematic machine (PKM) via the MATLAB software. On the basis of that, kinematics inverse module in EMC2(Enhanced Machine Controller) is recompiled and verified through CNC machining simulation, which set up an important foundation for later prototype construction and motor output control.


Author(s):  
Zhongzhe Chi ◽  
Dan Zhang ◽  
Qiaokang Liang

This paper proposes a design for a machine tool based on a parallel kinematic manipulator with three degrees of freedom, including rotations about x and y axis and translation along z axe. Based on the investigated displacement and inverse kinematics, the system stiffness of the parallel manipulator is conducted. Then in order to observe the highest system stiffness single and multi objective optimizations are performed in terms of rotation angles about x and y axis and translation displacement along z axe. Finally, a case study of tool path planning is presented to demonstrate the application of stiffness mapping.


Author(s):  
Bin Mei ◽  
Fugui Xie ◽  
Xin-Jun Liu ◽  
Xuan Luo

3-PP(Pa)S robot is a six degrees of freedom (DOFs) parallel mechanism with 2-DOF active planar joint. For the design and application of the 3-PP(Pa)S robot, it is essential to investigate the motion/force transmissibility of the robot. But previous studies of the motion/force transmissibility have mainly focused on the parallel robots with 1-DOF active joints and thus cannot be directly applied to the 3-PP(Pa)S robot. In this paper, input twist subspace, transmission wrench subspace and output twist subspace are investigated to build mathematical models of the twists and wrenches corresponding to the 2-DOF active planar joint. Afterwards, based on the previous established frame of the local transmission index, some extended performance evaluation indices are defined to describe the motion/force transmissibility of the 3-PP(Pa)S robot. On this basis, the singularity and motion/force transmissibility of this mechanism are investigated. The motion/force transmissibility evaluation method is meaningful and applicable for the 3-PP(Pa)S parallel robot with 2-DOF active joints and can be further applied to other mechanisms with multi-DOF active joints.


Sign in / Sign up

Export Citation Format

Share Document