Review of Natural Fiber Reinforced Elastomer Composites

Author(s):  
Pantea Kooshki ◽  
Tsz-Ho Kwok

This paper is a review on mechanical characteristics of natural fibers reinforced elastomers (both thermoplastics and thermosets). Increasing environmental concerns and reduction of petroleum resources attracts researchers attention to new green eco-friendly materials. To solve these environmental related issues, cellulosic fibers are used as reinforcement in composite materials. These days natural fibers are at the center of attention as a replacement for synthetic fibers like glass, carbon, and aramid fibers due to their low cost, satisfactory mechanical properties, high specific strength, renewable resources usage and biodegradability. The hydrophilic property of natural fibers decreases their compatibility with the elastomeric matrix during composite fabrication leading to the poor fiber-matrix adhesion. This causes low mechanical properties which is one of the disadvantages of green composites. Many researches have been done modifying fiber surface to enhance interfacial adhesion between filler particles and elastomeric matrix, as well as their dispersion in the matrix, which can significantly affect mechanical properties of the composites. Different chemical and physical treatments are applied to improve fiber/matrix interlocking.

2020 ◽  
Vol 9 (2) ◽  
pp. 1103-1110

There has been a growing interest to produce composite polymeric materialsusing natural fibers as reinforcement. Scientists prefer natural fiber as a reinforced material to make polymer composites due to their bio-degradability characteristics,strong mechanical properties, high specific strength, low cost, non-abrasiveand ecofriendly nature . This review presents the reported work on natural plant based fiber reinforced polymer composites with special reference to the type of natural fibers and host polymers. Various fiber treatments, which are carried out to improve the fiber– hostadhesion, improved mechanical properties that greatly increase the application of these polymer composites specially in automobile industries and bioapplications are highlighted.


Author(s):  
Vijay Kumar Mahakur ◽  
Sumit Bhowmik ◽  
Promod Kumar Patowari

Nowadays, the utilization of natural fiber reinforced composite has increased frequently. These natural fibers have significant features like low cost, renewable, and, more importantly, biodegradable in nature, making them to be utilized for various industrial sectors. However, the massive demand for natural fiber reinforced composites (NFRC), forces them to be machined and operated, which is required for countless areas in multiple industries like automotive, marine, aerospace and constructions. But before obtaining the final shape of any specimen, this specimen should come across numerous machining processes to get the desired shape and structure. Therefore, the present review paper focused on the various aspects during conventional and unconventional machining of the NFRC. It covers the work by exploring the influence of all input variables on the outcome produced after machining the NFRC. Various methodologies and tools are also discussed in this article for reducing the machining defects. The machining of the NFRC is found as a challenging task due to insufficient interlocking between the matrix and fibers, and minimum knowledge in machining characteristics and appropriate input parameters. Thus, this review is trying to assist the readers to grasp a basic understanding and information during the machining of the NFRC in every aspect.


Author(s):  
R. Panneer

Fibers embedded in the matrix of another material are the best example of modern day composite materials. Hybrid Composites made out of an amalgamation of Natural Fibers such as banana, jute, and coir along with glass fiber embedded in polymers have potential applications in automotive, aircraft and marine industries for their unique characteristics like high specific strength, light weight, design flexibility, corrosion resistance, biodegradability and low cost. In this work, epoxy hybrid composites reinforced with glass fiber mats and banana, jute, coir fibers of random lengths between 10-25 mm are prepared by varying their compositions in terms of weight percentage. The composites are fabricated by hand lay-up process and cut into test specimens as per ASTM Standards. Their mechanical characteristics such as Tensile Strength, Flexural Strength, Impact Strength, Hardness, Density and Water Absorption Capacity are evaluated and analysed.


2019 ◽  
Vol 3 (1) ◽  
pp. 27 ◽  
Author(s):  
Ahmad Al-Maharma ◽  
Naser Al-Huniti

Natural composites can be fabricated through reinforcing either synthetic or bio-based polymers with hydrophilic natural fibers. Ultimate moisture absorption resistance at the fiber–matrix interface can be achieved when hydrophilic natural fibers are used to reinforce biopolymers due to the high degree of compatibility between them. However, the cost of biopolymers is several times higher than that of their synthetic counterparts, which hinders their dissemination in various industries. In order to produce economically feasible natural composites, synthetic resins are frequently reinforced with hydrophilic fibers, which increases the incompatibility issues such as the creation of voids and delamination at fiber–matrix interfaces. Therefore, applying chemical and/or physical treatments to eliminate the aforementioned drawbacks is of primary importance. However, it is demonstrated through this review study that these treatments do not guarantee a sufficient improvement of the moisture absorption properties of natural composites, and the moisture treatments should be applied under the consideration of the following parameters: (i) type of hosting matrix; (ii) type of natural fiber; (iii) loading of natural fiber; (iv) the hybridization of natural fibers with mineral/synthetic counterparts; (v) implantation of nanofillers. Complete discussion about each of these parameters is developed through this study.


2020 ◽  
pp. 002199832097519
Author(s):  
Fatma Naiiri ◽  
Allègue Lamis ◽  
Salem Mehdi ◽  
Zitoune Redouane ◽  
Zidi Mondher

Natural fibers are increasingly used in composites because of their low cost and good mechanical properties. Cement reinforced with natural fibersis contemplates as a new generation of construction materials with superior mechanical and thermal performance. This study of three sizes’effect of Doum palm fiber explores the mortar’s behavior reinforced with different fiber ratio. The aim is to determine the optimal addition to improve mechanical and thermal properties of natural fiber reinforced cements. Physical, mechanical and thermal properties of composite are examined. Tensile properties of Doum fibers are verified to determine their potential as reinforced material. Findings prove that the use of alkali-treated Doum fiber as reinforcement in cement mortar composite leads to the upgrading of the mechanical properties including thermo-physical properties against composites reinforced with raw fibers and control cement mortars. While, the compression and flexural strength of the cement mortar reinforced with alkali-treated Doum fiber with diameter 0.3 mm (CT3) are metered to be 11.11 MPa, 5.22 MPa, respectively for fiber content 0.5%. Additionally, based on thermo-physical tests, it is assessed that the thermal conductivity and diffusivity decrease for cement mortar reinforced with Doum fiber with diameter 0.2 mm (CT2).


Author(s):  
M. Dinesh ◽  
R. Asokan ◽  
S. Vignesh ◽  
Chitikena Phani Kumar ◽  
Rajulapati Ravichand

Over the years, application of composite materials has got wider. So there is a necessity for development of new materials to satisfy the environmental requirements. It is viable through the process of hybridization of natural fibers to synthetic fibers. This investigation is carried out to determine the tensile and flexural strength of hybrid composites with various fiber combinations and stacking sequence. Thus it is easy to identify the natural fiber hybrid combination with high mechanical properties under static and varying thermal load conditions. The various fiber materials are meticulously chosen and three conventional and six different hybrid laminates were fabricated with various stacking sequences of selected fibers using hand layup technique. The tensile and flexural properties are determined through mechanical testing and compared with conventional materials. The failure morphologies are captured and investigated with zoom optical cameras. On analyzing the results, it is observed that carbon-flax hybrid composites exhibit nearly equivalent specific strength at a reduced cost compared to the carbon/glass fiber hybrid composites and also the effect of the stacking sequence in mechanical properties is elucidated through this study. Varying thermal load analysis reveals that there is a considerable loss in mechanical properties due to thermal exposure.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Anteneh Geremew ◽  
Pieter De Winne ◽  
Tamene Adugna Demissie ◽  
Hans De Backer

Concrete crack is one of the main problems observed in concrete technology due to drying shrinkage. Incorporating fibers in concrete production is one of the mechanisms implemented to mitigate cracks. Nowadays, investigators concentrate on different techniques to replace human-made fiber with existing natural fibers for fiber-reinforced composite material. Utilization of natural fiber has an initiation for the development of eco-friendly materials by reducing damages caused by human-made materials and saving nonrenewable resources. Natural fibers are readily and abundantly available, sustainable, and biodegradable, with low cost and low density, and have superior specific properties. Nevertheless, there are some limitations of natural fiber compared to human-made fiber. Consequently, significant energy was applied to alter natural fiber’s surface and morphology using physical, chemical, and biological treatment techniques to overcome the limitation. The primary intention of surface treatment is to modify the bond between the fiber surface and the polymer matrix. However, based on this literature review, there were no specific treatment techniques to be followed to select the best one from the others as criteria. It should include all parameters to consider starting from the stage from the cradle to the grave, cost of chemicals, transportation, and labors, including energy consumption and effluent energy. Additionally, their environmental effect also investigated in detail to compare each other.


2019 ◽  
Vol 8 (4) ◽  
pp. 6972-6977

The use of natural fiber composite has been widely promoted in many industries such as construction, automotive and even aerospace. Natural fibers can be extracted from plants that are abundantly available in the form of waste such as sunflower seed shells (SSS) and groundnut shells (GNS). These fibers were chosen as the reinforcement in epoxy to form composites. The performance of composites was evaluated following the ASTM D3039 and ASTM D790 for tensile and flexural tests respectively. Eight types of composites were prepared using SSS and GNS fibers as reinforcement and epoxy as the matrix with the fiber content of 20wt %. The fibers were untreated and treated with Sodium Hydroxide (NaOH) at various concentrations (6%, 10%, 15%, and 20%) and soaking time (24, 48 and 72 hours). The treatment has successfully enhanced the mechanical properties of both composites, namely SSS/epoxy and GNS/epoxy composites. The SSS/epoxy composite has the best mechanical properties when the fibers were treated for 48 hours using 6% of NaOH that produced 22 MPa and 13 MPa of tensile and flexural strength respectively. Meanwhile, the treatment on groundnut shells with 10% sodium Hydroxide for 24 hours has increased the Flexural strength tremendously (53%), however no significant effect on the tensile strength. The same trend was also observed on the tensile and flexural modulus. The increase of 41% in flexural modulus after treatment with 10% NaOH for 24 hours was also the evidence of mechanical properties enhancement. The evidence of improved fiber and matrix bonding after fiber treatment was also observed using a scanning electron microscope (SEM). The SSS/epoxy composites performed better in tensile application, meanwhile the GNS/epoxy composites are good in flexural application.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4603
Author(s):  
Marfa Camargo ◽  
Eyerusalem Adefrs Taye ◽  
Judith Roether ◽  
Daniel Tilahun Redda ◽  
Aldo Boccaccini

The use of ecological materials for building and industrial applications contributes to minimizing the environmental impact of new technologies. In this context, the cement and geopolymer sectors are considering natural fibers as sustainable reinforcement for developing composites. Natural fibers are renewable, biodegradable, and non-toxic, and they exhibit attractive mechanical properties in comparison with their synthetic fiber counterparts. However, their hydrophilic character makes them vulnerable to high volumes of moisture absorption, thus conferring poor wetting with the matrix and weakening the fiber–matrix interface. Therefore, modification and functionalization strategies for natural fibers to tailor interface properties and to improve the durability and mechanical behavior of cement and geopolymer-based composites become highly important. This paper presents a review of the physical, chemical and biological pre-treatments that have been performed on natural fibers, their results and effects on the fiber–matrix interface of cement and geopolymer composites. In addition, the degradation mechanisms of natural fibers used in such composites are discussed. This review finalizes with concluding remarks and recommendations to be addressed through further in-depth studies in the field.


2017 ◽  
Vol 2 (3) ◽  
pp. 309-314
Author(s):  
Sihama I. Salih ◽  
Jawad K. Oleiwi ◽  
Hwazen S. Fadhil

Natural fibers have recently become attractive to researchers due to their low cost, fairly good mechanical properties, high specific strength, non-abrasive, eco-friendly, bio-degradability and biocompatibility  characteristics, they are exploited as a replacement for the conventional fibers, such as glass, aramid and carbon. This study investigated the influence of fiber length and weight fraction of natural siwak fiber, with the selected length of (2, 6 and 12 mm) and weight fraction (3, 6 and 9 wt %), on some of mechanical and physical properties such as (tensile, impact and hardness), in addition to test the infrared spectroscopy FTIR of the prepared denture base resin and all of these tests were carried out at laboratory temperature.The properties of PMMA reinforced by natural fiber are mainly affected by the interfacial adhesion strength between the matrix and the fiber, and in order to improve interconnection between the siwak fiber and PMMA matrix, so the siwak fibers were treated with alkali (sodium hydroxide) solution prior to use as reinforcement materials. The results illustrated that the tensile strength, young modulus, fracture toughness and hardness tended to be improved with length and concentration ratios of siwak fiber, while the impact strength and elongation percentage at break decrease with fiber content in composite samples.


Sign in / Sign up

Export Citation Format

Share Document