Bi-Material Re-Entrant Triangle Structures Incorporating Tailorable Thermal Expansion and Tunable Poisson’s Ratio

Author(s):  
He Xiaobing ◽  
Xie Yan ◽  
Yu Jingjun

Abstract Based on the bi-material triangle lattice material, a new cellular structure: bi-material re-entrant triangle (BRT) is devised to incorporate tailorable coefficient of thermal expansion (CTE) and tunable Poisson’s ratio (PR) properties by replacing the straight base of a triangle with two hypotenuse members. An equation to systematically build the relationship among the external force, the temperature increment and the deformation for the planar lattice material with bounded joints is derived and then embedded into a theoretical model for devised BRT structure. Using master stiffness equation, effective PR, effective Young’s modulus as well as effective CTE are computed. In order to guide designers to construct an initial concept quickly, the design domain for coupling negative CTE and negative PR properties is proposed. Nine available paired characteristics for coupling effect are extracted and demonstrated with ABAQUS simulation.

2019 ◽  
Vol 11 (6) ◽  
Author(s):  
Xiaobing He ◽  
Jingjun Yu ◽  
Yan Xie

Abstract Based on the bi-material triangle lattice cell, a new cellular structure, bi-material re-entrant triangle (BRT) cellular structure, is devised to incorporate tailorable coefficient of thermal expansion (CTE) and tunable Poisson's ratio (PR) properties by replacing the straight base of a triangle with two hypotenuse members. A general thermoelasticity equation to systematically build the relationship among the external force, the temperature load, and the deformation for planar lattice structures with bounded joints is derived and then embedded into a theoretical model for the devised BRT structure. Using assembled thermoelasticity equation, effective PR, Young's modulus, as well as CTE are computed. In order to guide designers to construct initial concepts, the design domain for coupling negative CTE and negative PR properties is plotted. The material-property-combination region that can be achieved by this cellular structure is determined within an Ashby material selection chart of CTE versus PR. Nine available combinations of CTE and PR properties are extracted and demonstrated with abaqus simulation.


Soft Matter ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 779-784 ◽  
Author(s):  
Angelina Müller ◽  
Matthias C. Wapler ◽  
Ulrike Wallrabe

We developed a new and accurate method to determine the Poisson's ratio of PDMS, using thermal expansion and a profilometer.


2020 ◽  
Vol 6 (1) ◽  
pp. 50-56
Author(s):  
Francesco Baino ◽  
Elisa Fiume

AbstractPorosity is known to play a pivotal role in dictating the functional properties of biomedical scaffolds, with special reference to mechanical performance. While compressive strength is relatively easy to be experimentally assessed even for brittle ceramic and glass foams, elastic properties are much more difficult to be reliably estimated. Therefore, describing and, hence, predicting the relationship between porosity and elastic properties based only on the constitutive parameters of the solid material is still a challenge. In this work, we quantitatively compare the predictive capability of a set of different models in describing, over a wide range of porosity, the elastic modulus (7 models), shear modulus (3 models) and Poisson’s ratio (7 models) of bioactive silicate glass-derived scaffolds produced by foam replication. For these types of biomedical materials, the porosity dependence of elastic and shear moduli follows a second-order power-law approximation, whereas the relationship between porosity and Poisson’s ratio is well fitted by a linear equation.


1982 ◽  
Vol 1 (1) ◽  
pp. 24-27 ◽  
Author(s):  
I. Taitl

Fired resistors exhibit variations which are minimised by abrasive and laser trimming. The latter may cause unstable behaviour which is further aggravated by thermal shock. The chemical structure of a thick film resistor is analysed with respect to mechanical stress, and the theoretical conclusion that the coefficient of thermal expansion of the resistor should be equal to or smaller than that of the substrate is verified experimentally. The thermal behaviour of ruthenium dioxide is examined and a range of CTE values are determined for materials of varying chemical composition. The relationship between CTE and post laser trimming stability is demonstrated on four thick film resistors which differ in thermal expansion. It is pointed out that formulations with high metallic content can absorb tensile stress by elastic deformation, thus minimising the formation or propagation of laser induced cracks.


2006 ◽  
Vol 914 ◽  
Author(s):  
Jiping Ye ◽  
Satoshi Shimizu ◽  
Shigeo Sato ◽  
Nobuo Kojima ◽  
Junnji Noro

AbstractA recently developed bidirectional thermal expansion measurement (BTEM) method was applied to different types of low-k films to substantiate the reliability of the Poisson's ratio found with this technique and thereby to corroborate its practical utility. In this work, the Poisson's ratio was determined by obtaining the temperature gradient of the biaxial thermal stress from substrate curvature measurements, the temperature gradient of the whole thermal expansion strain along the film thickness from x-ray reflectivity (XRR) measurements, and reduced modulus of the film from nanoindentation measurements. For silicon oxide-based SiOC film having a thickness of 382.5 nm, the Poisson's ratio, Young's modulus and thermal extension coefficient (TEC) were determined to be Vf = 0.26, αf =21 ppm/K and Ef =9,7 GPa. These data are close to the levels of metals and polymers rather than the levels of fused silicon oxide, which is characterized by Vf = 0.17 and Er = 69.6 GPa. The alkyl component in the silicon oxide-based framework is thought to act as an agent in reducing the modulus and elevating the Poisson's ratio in SiOC low-k materials. In the case of an organic polymer SiLK film with a thickness of 501.5 nm, the Poisson's ratio, Young's modulus and TEC were determined to be Vf = 0.39, αf =74 ppm/K and Er =3.1 GPa, which are in the typical range of V= 0.34~0.47 with E =1.0~10 GPa for polymer materials. From the viewpoint of the relationship between the Poisson's ratio and Young's modulus as classified by different material types, the Poisson's ratios found for the silicon oxide-based SiOC and organic SiLK films are reasonable values, thereby confirming that BTEM is a reliable and effective method for evaluating the Poisson's ratio of thin films.


2020 ◽  
Vol 116 (8) ◽  
pp. 083101
Author(s):  
Rui-Zi Zhang ◽  
Jian Liu ◽  
Yu-Yang Zhang ◽  
Shixuan Du ◽  
Sokrates T. Pantelides

Sign in / Sign up

Export Citation Format

Share Document