Numerical Modelling of the Biaxial Fatigue Test of Aluminium Wheels

Author(s):  
Federico Ballo ◽  
Giampiero Mastinu ◽  
Giorgio Previati ◽  
Massimiliano Gobbi

Abstract The paper is devoted to the numerical simulation of fatigue life of lightweight aluminium wheels subject to biaxial fatigue test. A numerical model based on finite elements is developed for the scope. The model receives as input the test load sequences and outputs the fatigue life of wheel. Two different methods for modelling the load transfer mechanism of the tyre have been analysed, i.e. how the tyre-drum contact forces are transferred to the wheel rim. The first method consists of a simple cosine loading function acting on a fixed arch of the wheel rim. The second method relies on a physical model of the tyre that is fixed at the tyre-rim interface surface; the computed reaction forces are fed as input to the wheel model. The fatigue life of the wheel is estimated by using the Palmgrem-Miner approach. Both the Sines fatigue criterion and the Papadopoulos critical plane with gradient effect criterion are used and the results are compared. Experimental tests have been performed on an actual wheel mounted on the biaxial test bench for a preliminary validation of the method.

2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Federico Ballo ◽  
Massimiliano Gobbi ◽  
Gianpiero Mastinu ◽  
Giorgio Previati

For the lightweight design of the wheel rim of motorcycles, the knowledge of the way in which contact forces are transmitted by the tire is of crucial importance. In this paper, an analytical model of the tire is developed and explicit formulae giving the distribution of the radial and axial forces acting on the wheel rim for a given vertical load are derived. The analytical model is validated by means of a finite element method (FEM) model and experimental tests. The proposed analytical model is able to predict the radial deflection of both a front and a rear tire for a racing motorbike with very good accuracy over a wide range of inflating pressures and vertical loads. The force distributions are in very good agreement with the results of the FEM model. Experimental tests show that the force distribution at the interface between the tire and rim can be used to predict the stress distribution in the rim with a good accuracy.


2016 ◽  
Vol 62 (1) ◽  
pp. 83-98 ◽  
Author(s):  
A. Szydło ◽  
K. Malicki

Abstract The bonding state of the asphalt layers in a road pavement structure significantly affects its fatigue life. These bondings, therefore, require detailed tests and optimization. In this paper, the analyses of the correlation between the results of laboratory static tests and the results of fatigue tests of asphalt mixture interlayer bondings were performed. The existence of the relationships between selected parameters was confirmed. In the future, the results of these analyses may allow for assessment of interlayer bondings’ fatigue life based on the results of quick and relatively easy static tests.


Author(s):  
N. Bosso ◽  
A. Gugliotta ◽  
N. Zampieri

Determination of contact forces exchanged between wheel and rail is one of the most important topics in railway dynamics. Recent studies are oriented to improve the existing contact methods in terms of computational efficiency on one side and on the other side to develop more complex and precise representation of the contact problem. This work shows some new results of the contact code developed at Politecnico di Torino identified as RTCONTACT; this code, which is an improvement of the CONPOL algorithm, is the result of long term activities, early versions were used in conjunction with MBS codes or in Matlab® environment to simulate vehicle behaviour. The code has been improved also using experimental tests performed on a scaled roller-rig. More recently the contact model was improved in order to obtain a higher computational efficiency that is a required for the use inside of a Real Time process. Benefit of a Real Time contact algorithm is the possibility to use complex simulation models in diagnostic or control systems in order to improve their performances. This work shows several comparisons of the RTCONTACT contact code respect commercial codes, standards and benchmark results.


Author(s):  
Francesco Braghin ◽  
Federico Cheli ◽  
Edoardo Sabbioni

Individual tire model parameters are traditionally derived from expensive component indoor laboratory tests as a result of an identification procedure minimizing the error with respect to force and slip measurements. These parameters are then transferred to vehicle models used at a design stage to simulate the vehicle handling behavior. A methodology aimed at identifying the Magic Formula-Tyre (MF-Tyre) model coefficients of each individual tire for pure cornering conditions based only on the measurements carried out on board vehicle (vehicle sideslip angle, yaw rate, lateral acceleration, speed and steer angle) during standard handling maneuvers (step-steers) is instead presented in this paper. The resulting tire model thus includes vertical load dependency and implicitly compensates for suspension geometry and compliance (i.e., scaling factors are included into the identified MF coefficients). The global number of tests (indoor and outdoor) needed for characterizing a tire for handling simulation purposes can thus be reduced. The proposed methodology is made in three subsequent steps. During the first phase, the average MF coefficients of the tires of an axle and the relaxation lengths are identified through an extended Kalman filter. Then the vertical loads and the slip angles at each tire are estimated. The results of these two steps are used as inputs to the last phase, where, the MF-Tyre model coefficients for each individual tire are identified through a constrained minimization approach. Results of the identification procedure have been compared with experimental data collected on a sport vehicle equipped with different tires for the front and the rear axles and instrumented with dynamometric hubs for tire contact forces measurement. Thus, a direct matching between the measured and the estimated contact forces could be performed, showing a successful tire model identification. As a further verification of the obtained results, the identified tire model has also been compared with laboratory tests on the same tire. A good agreement has been observed for the rear tire where suspension compliance is negligible, while front tire data are comparable only after including a suspension compliance compensation term into the identification procedure.


2017 ◽  
Vol 743 ◽  
pp. 264-268 ◽  
Author(s):  
Anastasia Smirnova ◽  
Yury Pochivalov ◽  
Victor Panin ◽  
Anatoly Orishich ◽  
Aleksandr Malikov ◽  
...  

The structure and mechanical properties of welded joints of VT23 titanium alloy received by method of laser welding after modifying the surface layers by ultrasonic mechanical forging (Treatment 1 and Treatment 2) were investigated. The experimental tests have revealed that the Treatment 2 provides a multiple increase in the relaxation property in fatigue life test. The formation of nonuniform distribution of vanadium, chromium and molybdenum in the welded joint increases the strength and, at the same time, the brittleness of β-phase. Mechanical treatment of the surface layers in the second mode provides a multiple increase in ductility up to 13%, in the as-received condition up to 9.9%. In consequence of plastic deformation, the β-phase intensity reduces twice with Treatment 2 which is related to its clustering. As follows from a presented data, the fatigue life of the VT23 titanium alloy has increased more than threefold.


Author(s):  
Takashi Ogata

Polycrystalline conventional casting (CC) and directionally solidified (DS) Ni base superalloys are widely used as gas turbine blade materials. It was reported that the surface of a gas turbine blade is subjected to a biaxial tensile-compressive fatigue loading during a start-stop operation, based on finite element stress analysis results. It is necessary to establish the life prediction method of these superalloys under biaxial fatigue loading for reliable operations. In this study, the in-plane biaxial fatigue tests with different phases of x and y directional strain cycles were conducted on both CC and DS Ni base superalloys (IN738LC and GTD111DS) at high temperatures. The strain ratio ϕ was defined as the ratio between the x and y directional strains at 1/4 cycle and was varied from 1 to −1. In ϕ=1 and −1. The main cracks propagated in both the x and y directions in the CC superalloy. On the other hand, the main cracks of the DS superalloy propagated only in the x direction, indicating that the failure resistance in the solidified direction is weaker than that in the direction normal to the solidified direction. Although the biaxial fatigue life of the CC superalloy was correlated with the conventional Mises equivalent strain range, that of the DS superalloy depended on ϕ. The new biaxial fatigue life criterion, equivalent normal strain range for the DS superalloy was derived from the iso-fatigue life curve on a principal strain plane defined in this study. Fatigue life of the DS superalloy was correlated with the equivalent normal strain range. Fatigue life of the DS superalloy under equibiaxial fatigue loading was significantly reduced by introducing compressive strain hold dwell. Life prediction under equibiaxial fatigue loading with the compressive strain hold was successfully made by the nonlinear damage accumulation model. This suggests that the proposed method can be applied to life prediction of the gas turbine DS blades, which are subjected to biaxial fatigue loading during operation.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1093 ◽  
Author(s):  
Reggiani

Shot-peening and deep rolling are mechanical surface treatments that are commonly applied to enhance the fatigue performances of components, owing to their capacity to generate compressive residual stresses and induce work hardening. However, literature is still poor of published data concerning the application of these treatments to high strength steels fasteners, although these represent a class of components among the most widespread. In the present work, the impact of deep rolling and shot-peening performed in the underhead radius of two set of fasteners made of 36NiCrMo and 42CrMoV for fatigue life enhancement has been investigated. The experimental tests consisted of six combinations of shot-peening and deep rolling, including the non-treated state. Two test campaigns have been sequentially carried out with different process parameters and treatment sequences. The results always showed a beneficial impact of the deep rolling on fatigue, especially for the 42CrMoV steel. Conversely, the effect of the shot-peening strongly depended on the selected set of parameters, alternatively leading to an improvement or a worsening of the fatigue life in relation to the level of induced surface roughness.


2014 ◽  
Vol 11 (2) ◽  
pp. 540-546
Author(s):  
Baghdad Science Journal

In this research a study of the effect of quality, sequential and directional layers for three types of fibers are:(Kevlar fibers-49 woven roving and E- glass fiber woven roving and random) on the fatigue property using epoxy as matrix. The test specimens were prepared by hand lay-up method the epoxy resin used as a matrix type (Quick mast 105) in prepared material composit . Sinusoidal wave which is formed of variable stress amplitudes at 15 Hz cycles was employed in the fatigue test ( 10 mm )and (15mm) value 0f deflection arrival to numbers of cycle failure limit, by rotary bending method by ( S-N) curves this curves has been determined ( life , limit and fatigue strength) of composite . The results show us the reinforcement has important act to increased resistance to the fatigue compared with specimens have non reinforcement this side the specimens reinforcement of glass fiber have resistance to fatigue and fatigue life better than the specimens reinforcement of Kevlar fiber . According to hybrid composite sample fatigue test results showed that the sample which reinforced (Kevlar - regular glass – Kevlar) has a best results which showed stress carrying the most powerful and longer fatigue life with more than (1.3 ×10 6) cycle from other hybrids , while the sample with the sample with three Kevlar reinforced layers have less resistant to fatigue


2009 ◽  
Vol 417-418 ◽  
pp. 825-828
Author(s):  
Sunil Bhat ◽  
Vijay G. Ukadgaonker

Strength mismatch effect across weld interfaces, generated by welding weak and strong steels, influences fatigue and fracture properties of a welded bimetallic composite. Advancing fatigue crack tip in weak parent steel is shielded from the remote load when it reaches near the interface of ultra strong weld steel. Entry of crack tip plasticity into weld steel induces load transfer towards weld which dips crack growth rates thereby enhancing the fatigue life of the composite. A computational model for fatigue life prediction of strength mismatched welded composite under K dominant conditions is validated by experimental work in this paper. Notched bimetallic compact tension specimens, prepared by electron beam welding of weak alloy and strong maraging steels, are subjected to fatigue testing in high cycle regime.


Sign in / Sign up

Export Citation Format

Share Document