Evaluation of Inertial Measurement Units for Short Time Motion Tracking

2021 ◽  
Author(s):  
Rene Neurauter ◽  
Peter Hergel ◽  
Johannes Gerstmayr

Abstract The goal of the present paper is to investigate inertial measurement systems for the ability to reconstruct the short time rigid body motion of objects, e.g. clumps in snow avalanches. While strapdown inertial navigation is well established, special algorithms are needed for the accurate motion reconstruction for short time motion with partially known boundary conditions. Furthermore, low cost inertial sensors are available with the ability to log translational accelerations and angular velocities as well as magnetic flux densities, which need to be extended with respect to GPS, time synchronization, and power management functionalities. In this paper, a newly developed system to measure the motion inside snow avalanches with redundant sensors, which have significantly higher measurement ranges than systems published in the past, is presented. In addition, an algorithm for motion reconstruction from measured translational accelerations, angular velocities and magnetic flux densities is derived. Furthermore, an optimization by eliminating terminal translational velocities is presented. The developed system is tested and its function is confirmed by reproducible measurement data from two experiments on skis, whereas these experiments differ in the magnitude of rotations. The presented motion reconstruction algorithm was used to evaluate the measurement data and thus the newly developed measurement system.

2018 ◽  
Author(s):  
Rizki Eka Putri ◽  
Denny Darlis

This article was under review for ICELTICS 2018 -- In the medical world there is still service dissatisfaction caused by lack of blood type testing facility. If the number of tested blood arise, a lot of problems will occur so that electronic devices are needed to determine the blood type accurately and in short time. In this research we implemented an Artificial Neural Network on Xilinx Spartan 3S1000 Field Programable Gate Array using XSA-3S Board to identify the blood type. This research uses blood sample image as system input. VHSIC Hardware Discription Language is the language to describe the algorithm. The algorithm used is feed-forward propagation of backpropagation neural network. There are 3 layers used in design, they are input, hidden1, and output. At hidden1layer has two neurons. In this study the accuracy of detection obtained are 92%, 92%, 92%, 90% and 86% for 32x32, 48x48, 64x64, 80x80, and 96x96 pixel blood image resolution, respectively.


Author(s):  
Yasunobu Iwai ◽  
Koichi Shinozaki ◽  
Daiki Tanaka

Abstract Compared with space parts, consumer parts are highly functional, low cost, compact and lightweight. Therefore, their increased usage in space applications is expected. Prior testing and evaluation on space applicability are necessary because consumer parts do not have quality guarantees for space application [1]. However, in the conventional reliability evaluation method, the test takes a long time, and the problem is that the robustness of the target sample can’t be evaluated in a short time. In this report, we apply to the latest TSOP PEM (Thin Small Outline Package Plastic Encapsulated Microcircuit) an evaluation method that combines preconditioning and HALT (Highly Accelerated Limit Test), which is a test method that causes failures in a short time under very severe environmental conditions. We show that this method can evaluate the robustness of TSOP PEMs including solder connections in a short time. In addition, the validity of this evaluation method for TSOP PEM is shown by comparing with the evaluation results of thermal shock test and life test, which are conventional reliability evaluation methods.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 789
Author(s):  
David Kreuzer ◽  
Michael Munz

With an ageing society comes the increased prevalence of gait disorders. The restriction of mobility leads to a considerable reduction in the quality of life, because associated falls increase morbidity and mortality. Consideration of gait analysis data often alters surgical recommendations. For that reason, the early and systematic diagnostic treatment of gait disorders can spare a lot of suffering. As modern gait analysis systems are, in most cases, still very costly, many patients are not privileged enough to have access to comparable therapies. Low-cost systems such as inertial measurement units (IMUs) still pose major challenges, but offer possibilities for automatic real-time motion analysis. In this paper, we present a new approach to reliably detect human gait phases, using IMUs and machine learning methods. This approach should form the foundation of a new medical device to be used for gait analysis. A model is presented combining deep 2D-convolutional and LSTM networks to perform a classification task; it predicts the current gait phase with an accuracy of over 92% on an unseen subject, differentiating between five different phases. In the course of the paper, different approaches to optimize the performance of the model are presented and evaluated.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hsi-Chien Liu ◽  
Gou-Jen Wang

The object of this paper is to develop a high antireflection silicon solar cell. A novel two-stage metal-assisted etching (MAE) method is proposed for the fabrication of an antireflective layer of a micronanohybrid structure array. The processing time for the etching on an N-type high-resistance (NH) silicon wafer can be controlled to around 5 min. The resulting micronanohybrid structure array can achieve an average reflectivity of 1.21% for a light spectrum of 200–1000 nm. A P-N junction on the fabricated micronanohybrid structure array is formed using a low-cost liquid diffusion source. A high antireflection silicon solar cell with an average efficiency of 13.1% can be achieved. Compared with a conventional pyramid structure solar cell, the shorted circuit current of the proposed solar cell is increased by 73%. The major advantage of the two-stage MAE process is that a high antireflective silicon substrate can be fabricated cost-effectively in a relatively short time. The proposed method is feasible for the mass production of low-cost solar cells.


2021 ◽  
Vol 13 (4) ◽  
pp. 829
Author(s):  
Teresa Gracchi ◽  
Guglielmo Rossi ◽  
Carlo Tacconi Stefanelli ◽  
Luca Tanteri ◽  
Rolando Pozzani ◽  
...  

Unmanned aerial vehicle (UAV) photogrammetry has recently become a widespread technique to investigate and monitor the evolution of different types of natural processes. Fluvial geomorphology is one of such fields of application where UAV potentially assumes a key role, since it allows for overcoming the intrinsic limits of satellite and airborne-based optical imagery on one side, and in situ traditional investigations on the other. The main purpose of this paper was to obtain extensive products (digital terrain models (DTMs), orthophotos, and 3D models) in a short time, with low costs and at a high resolution, in order to verify the capability of this technique to analyze the active geomorphic processes on a 12 km long stretch of the French–Italian Roia River at both large and small scales. Two surveys, one year apart from each other, were carried out over the study area and a change detection analysis was performed on the basis of the comparison of the obtained DTMs to point out and characterize both the possible morphologic variations related to fluvial dynamics and modifications in vegetation coverage. The results highlight how the understanding of different fluvial processes may be improved by appropriately exploiting UAV-based products, which can thus represent a low-cost and non-invasive tool to crucially support decisionmakers involved in land management practices.


2021 ◽  
Vol 7 (2) ◽  
pp. 496-499
Author(s):  
Stadler B. Eng. Sebastian ◽  
Herbert Plischke ◽  
Christian Hanshans

Abstract Bioimpedance analysis is a label-free and easy approach to obtain information on cellular barrier integrity and cell viability more broadly. In this work, we introduce a small, low-cost, portable in vitro impedance measurement system for studies where a shadow-free exposure of the cells is a requirement. It can be controlled by a user-friendly web interface and can perform measurements automated and autonomously at short intervals. The system can be integrated into an existing IoT network for remote monitoring and indepth analyses. A single-board computer (SBC) serves as the central unit, to control, analyze, store and forward the measurement data from the single-chip impedance analyzer. Various materials and manufacturing methods were used to produce a purpose-built lid on top of a modified 24-well microtiter plate in a “do it yourself” fashion. Furthermore, three different sensor designs were developed utilizing anodic aluminum oxide (AAO) membranes and gold-plated electrodes. Preliminary tests with potassium chloride (KCl) showed first promising results.


Author(s):  
Laura Pacyna ◽  
Alexandre Bertret ◽  
Alain Derclaye ◽  
Luc Papeleux ◽  
Jean-Philippe Ponthot

Abstract To investigate the contact phenomenon between the blade tip and the abradable coated casing, a rig test was designed and built. This rig test fills the following constraints: simplification of the low-pressure compressor environment but realistic mechanical conditions, ability to test several designs in short time, at low cost and repeatability. The rig test gives the opportunity to investigate the behavior of different blade designs regarding the sought phenomenon, to refine and mature the phenomenon comprehension and to get data for the numerical tool validation. The numerical tool considers a 3D finite elements model of low-pressure compressor blades with a surrounding rigid casing combined with a specialized model to take into account the effects of the wear of the abradable coating on the blade dynamics. Numerical results are in good agreement with tests in terms of: critical angular speed, blade dynamics and wear pattern on the abradable coated casing.


Sign in / Sign up

Export Citation Format

Share Document