Identification of Viscoelastic Properties of Finite Element Structures With Joints

Author(s):  
Torsten Herrmann ◽  
Valdas Chaika

Abstract Identification of the damping and stiffness parameters of the composite joints in finite element structures is analyzed. For the modeling of the viscoelastic properties of the joints the classical Voigt-Kelvin and generalized Maxwell model (three parameter solid) are used. A time domain identification algorithm for classically and non-classically damped dynamic systems is developed. It is based on the application of an extended Kalman filter and least square technique. The algorithm uses complex modal analysis and sparse matrix technology. Both force and base excited systems are considered. Experimental verification of the identification results is carried out on a test structure. The accuracy of the modeling of damping in the joint using the Voigt-Kelvin and generalized Maxwell models is investigated.

Author(s):  
Edward B Muliawan ◽  
Savvas G Hatzikiriakos

The linear and non-linear viscoelastic properties and the effect of refrigerated storage on the rheological properties of three commercial mozzarella cheeses was studied. The linearity of the rheological behavior of mozzarella cheese increases with temperature because of the ability for the cheese to flow easier at higher temperatures as well as the lack of yield stress at elevated temperatures. The generalized Maxwell model parameters obtained from the linear viscoelastic data were found to describe the linear relaxation dynamics of the mozzarella cheese satisfactorily. It is also shown that the damping function of mozzarella cheese, which is a measure of the degree of non-linearity, can be described by a generalized Zapas model. Although, the different commercial mozzarella cheeses do not exhibit linear viscoelastic differences at room temperature, they do show significant differences at 60°C. The effect of refrigerated storage on the linear viscoelastic properties is brand-dependent and indicates structural differences among cheese samples. Finally it is shown that the dynamic moduli decrease with longer refrigerated storage due to proteolysis activities and/or weakening of the casein matrix.


2011 ◽  
Vol 478 ◽  
pp. 64-69 ◽  
Author(s):  
M. Guemmadi ◽  
A. Ouibrahim

The hydrodynamic lubrication interest is still of great importance, so that more and more elaborated lubricants are considered. They, however, involve consequently more and more hydrodynamic complexity as a result of the rheological properties of the additives. In our case, we consider lubricants having viscoelastic properties described by a generalized Maxwell model used in the case of journal bearing lubrication. The complexity of the coupled associated equations (momentum and constitutive) to describe the hydrodynamic prevailing in such a geometry requires numerical solutions. Using the commercial Finite Volume software Fluent 6.3 together with an appropriate developed computational code, via UDF (User Defined Functions), we determine the pressure distribution as well as the flow velocity profile and the stress field in the core, the load bearing capacity developed and the attitude angle; all together with the effects of the viscoelastic lubricant parameters (relaxation time and shear viscosity).


2019 ◽  
Vol 9 (20) ◽  
pp. 4246 ◽  
Author(s):  
Yongchun Cheng ◽  
He Li ◽  
Liding Li ◽  
Yuwei Zhang ◽  
Haitao Wang ◽  
...  

To obtain the viscoelastic parameters of asphalt mixtures and analyze the effect of temperatures and modifiers on viscoelastic properties of asphalt mixtures, the creep compliances of the neat asphalt mixture (AM), compound diatomite and basalt fibers reinforced asphalt mixture (DBFAM), and styrene-butadiene-styrene modified asphalt mixture (SBSAM) were tested and calculated by the static creep tests. And the creep compliances of the three asphalt mixtures at −20 °C, −10 °C, and 0 °C are deducted by the time–temperature equivalence principle (TTEP) and Arrhenius equation. Further, the relaxation modulus of the three asphalt mixtures from −20 °C to 50 °C at 10 °C increments are calculated by the convolution integral and Simpson method. Subsequently, the Burgers model, the generalized Kelvin model, and the generalized Maxwell model are applied to analyze the viscoelastic properties of the three asphalt mixtures at different temperatures. The results show that the generalized Kelvin model and the generalized Maxwell model are superior to the Burgers model in describing the variation of viscoelastic properties of asphalt mixtures with loading time. At low temperatures, asphalt mixtures have excellent properties in resisting permanent deformation and releasing internal stress. Besides, the addition of SBS modifier and compound diatomite and basalt fibers modifier can significantly raise the viscosity η1 and the elastic modulus E1 of the asphalt mixture, respectively.


2021 ◽  
pp. 1-9
Author(s):  
Baigang Zhao ◽  
Xianku Zhang

Abstract To solve the problem of identifying ship model parameters quickly and accurately with the least test data, this paper proposes a nonlinear innovation parameter identification algorithm for ship models. This is based on a nonlinear arc tangent function that can process innovations on the basis of an original stochastic gradient algorithm. A simulation was carried out on the ship Yu Peng using 26 sets of test data to compare the parameter identification capability of a least square algorithm, the original stochastic gradient algorithm and the improved stochastic gradient algorithm. The results indicate that the improved algorithm enhances the accuracy of the parameter identification by about 12% when compared with the least squares algorithm. The effectiveness of the algorithm was further verified by a simulation of the ship Yu Kun. The results confirm the algorithm's capacity to rapidly produce highly accurate parameter identification on the basis of relatively small datasets. The approach can be extended to other parameter identification systems where only a small amount of test data is available.


Author(s):  
JINLAI ZHOU ◽  
YANG SONG ◽  
CHENGUANG XU ◽  
CHUNQIU ZHANG ◽  
XUE SHI

The periodontal ligament (PDL) exhibits different material mechanical properties along the long axis of the teeth. To explore the creep and the relaxation effects of dissimilar layers of PDL, this paper took the central incisors of porcine mandibular as experimental subjects and divided them perpendicular to the teeth axis into five layers. Creep experiments and relaxation experiments on five layers were conducted to obtain the creep compliance and relaxation modulus at different layers. Linear elastic model, generalized Kelvin model, and generalized Maxwell model were used to describe the major characteristics of the PDL: Instantaneous elasticity, creep and relaxation. Fitting accuracy of three-parameter, five-parameter, and seven-parameter of the model was compared, and the constitutive equations of different layers were established by the least square method. The results presented that the creep strain and the relaxation stress of PDL were exponentially correlated with time under different loading conditions. Different layers showed a significant effect on the creep strain and relaxation stress of PDL. Along the long axis of the teeth, the changing rule of the creep compliance and relaxation modulus of each layer showed quite the contrary, and the instantaneous elastic modulus first decreased to the minimum, then increased to the maximum. Higher instantaneous elastic modulus led to lower creep compliance and higher relaxation modulus. The generalized Kelvin model and the generalized Maxwell model well characterized the creep and relaxation properties of PDL. Fitting accuracy increased with the number of model parameters. The relaxation time of PDL was about one order of magnitude shorter than the creep retardation time, which indicated that the relaxation effect lasted shorter than the creep effect.


2021 ◽  
Vol 18 (4) ◽  
pp. 567-582
Author(s):  
Shikai Jian ◽  
Li-Yun Fu ◽  
Chenghao Cao ◽  
Tongcheng Han ◽  
Qizhen Du

Abstract Natural fractures are usually multiscale in size, orientations and distribution, resulting in complex anisotropic characteristics. Analytical methods for quantifying the associated effective elastic properties are based on some assumptions, such as dilute fracture concentration and regular-shaped fractures, which do not occur in actual reservoirs. Here, we conduct anisotropic finite-element modeling of effective elastic properties of complex fractured rocks using the least-square fitting method. The algorithm is developed for a 3D case and validated by classical effective medium theories for models with different fracture densities. The results of the 3D numerical method agree well with the theoretical predictions at low fracture density. The model also considers the interactions among fractures to calculate equivalent stiffness tensors at high fracture density. Three 2D fracture models are simulated to demonstrate the basic behavior of stress interactions and their effect on the overall elasticity under different fracture densities. We applied the developed model to 3D natural fractures built from a real outcrop, and we found that the fracturing pattern significantly affects the effective anisotropy properties. The resultant P-wave phase velocities as functions of the incidence angle and frequency are anisotropic. This study provides a great potential to calculate equivalent stiffness tensors and anisotropic properties of 3D multiscale natural fractures.


Author(s):  
Sergey Yu. Fialko

A special finite element modelling rigid links is proposed for the linear static and buckling analysis. Unlike the classical approach based on the theorems of rigid body kinematics, the proposed approach preserves the similarity between the adjacency graph for a sparse matrix and the adjacency graph for nodes of the finite element model, which allows applying sparse direct solvers more effectively. Besides, the proposed approach allows significantly reducing the number of nonzero entries in the factored stiffness matrix in comparison with the classical one, which greatly reduces the duration of the solution. For buckling problems of structures containing rigid bodies, this approach gives correct results. Several examples demonstrate its efficiency.


Sign in / Sign up

Export Citation Format

Share Document