Autonomous Lighting Audits: Part 2 — Light Identification and Analysis

Author(s):  
Trevor J. Terrill ◽  
Christopher J. Bay ◽  
Bryan P. Rasmussen

Buildings are responsible for approximately 40% of all US energy use and carbon emissions. There exists large potential to improve building efficiency through retro-commissioning, but expense and required expertise of building auditors limit current implementation. Autonomous robotic assessments have the potential to provide consistent building energy audits with reduced cost and enhanced capabilities. As a first step in automating building audits, this paper presents work on automating the lighting analysis of a building. As an aerial vehicle navigates and explores a room, the prototype system captures images and collects spectrometer readings. These data are used to quantify and classify lighting in a room. Additionally, images acquired from the optical camera are merged to form a composite image of the area. This composite image is used for navigation to lights to record spectrometer readings. Lighting type is then classified from these spectrometer readings. The combined lighting quantification and classification is used to create a topology map of light levels. The combined data are used to perform a thorough analysis of lighting and make lighting recommendations.

Author(s):  
Christopher J. Bay ◽  
Trevor J. Terrill ◽  
Bryan P. Rasmussen

Buildings represent a large portion, approximately 40%, of all US energy use and carbon emissions. Significant savings can be found by conducting energy audits of the buildings, but the extensive training and cost of the audits prevent more widespread use. Automating the audit process with robots can greatly reduce the cost and provide more information to give better recommendations. This paper is the first in a series that proposes a system of autonomous robots that can conduct energy audits. Specifically, this paper presents an overview of the autonomous system and details an unmanned aerial vehicle (UAV) platform which is used to perform automated lighting audits. Also, modifications to an existing exploration algorithm are proposed that will allow autonomous exploration of an unknown, GPS-denied environment while identifying and navigating to targets in real-time. This new algorithm is called SRT-Target. The UAV navigates to the lights, the target objects, in order to take additional measurements so that the light type can be determined. Movement of the UAV can be limited by a calibration factor β to account for sensor capabilities of the target sensor. Simulations of the algorithm show the exploration of the unknown area and the UAV moving to targets as they are identified.


Nature Energy ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 309-316
Author(s):  
Constantine E. Kontokosta ◽  
Danielle Spiegel-Feld ◽  
Sokratis Papadopoulos

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 2024
Author(s):  
Marco Pritoni ◽  
Drew Paine ◽  
Gabriel Fierro ◽  
Cory Mosiman ◽  
Michael Poplawski ◽  
...  

Digital and intelligent buildings are critical to realizing efficient building energy operations and a smart grid. With the increasing digitalization of processes throughout the life cycle of buildings, data exchanged between stakeholders and between building systems have grown significantly. However, a lack of semantic interoperability between data in different systems is still prevalent and hinders the development of energy-oriented applications that can be reused across buildings, limiting the scalability of innovative solutions. Addressing this challenge, our review paper systematically reviews metadata schemas and ontologies that are at the foundation of semantic interoperability necessary to move toward improved building energy operations. The review finds 40 schemas that span different phases of the building life cycle, most of which cover commercial building operations and, in particular, control and monitoring systems. The paper’s deeper review and analysis of five popular schemas identify several gaps in their ability to fully facilitate the work of a building modeler attempting to support three use cases: energy audits, automated fault detection and diagnosis, and optimal control. Our findings demonstrate that building modelers focused on energy use cases will find it difficult, labor intensive, and costly to create, sustain, and use semantic models with existing ontologies. This underscores the significant work still to be done to enable interoperable, usable, and maintainable building models. We make three recommendations for future work by the building modeling and energy communities: a centralized repository with a search engine for relevant schemas, the development of more use cases, and better harmonization and standardization of schemas in collaboration with industry to facilitate their adoption by stakeholders addressing varied energy-focused use cases.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 749
Author(s):  
John H. Scofield ◽  
Susannah Brodnitz ◽  
Jakob Cornell ◽  
Tian Liang ◽  
Thomas Scofield

In this work, we present results from the largest study of measured, whole-building energy performance for commercial LEED-certified buildings, using 2016 energy use data that were obtained for 4417 commercial office buildings (114 million m2) from municipal energy benchmarking disclosures for 10 major U.S. cities. The properties included 551 buildings (31 million m2) that we identified as LEED-certified. Annual energy use and greenhouse gas (GHG) emission were compared between LEED and non-LEED offices on a city-by-city basis and in aggregate. In aggregate, LEED offices demonstrated 11% site energy savings but only 7% savings in source energy and GHG emission. LEED offices saved 26% in non-electric energy but demonstrated no significant savings in electric energy. LEED savings in GHG and source energy increased to 10% when compared with newer, non-LEED offices. We also compared the measured energy savings for individual buildings with their projected savings, as determined by LEED points awarded for energy optimization. This analysis uncovered minimal correlation, i.e., an R2 < 1% for New Construction (NC) and Core and Shell (CS), and 8% for Existing Euildings (EB). The total measured site energy savings for LEED-NC and LEED-CS was 11% lower than projected while the total measured source energy savings for LEED-EB was 81% lower than projected. Only LEED offices certified at the gold level demonstrated statistically significant savings in source energy and greenhouse gas emissions as compared with non-LEED offices.


2021 ◽  
Vol 11 (14) ◽  
pp. 6254
Author(s):  
Elena G. Dascalaki ◽  
Constantinos A. Balaras

In an effort to reduce the operational cost of their dwellings, occupants may even have to sacrifice their indoor thermal comfort conditions. Following the economic recession in Greece over recent years, homeowners have been forced to adapt their practices by shortening heating hours, lowering the indoor thermostat settings, isolating spaces that are not heated or even turning off their central heating system and using alternative local heating systems. This paper presents the results from over 100 occupant surveys using questionnaires and walk-through energy audits in Hellenic households that documented how occupants operated the heating systems in their dwellings and the resulting indoor thermal comfort conditions and actual energy use. The results indicate that the perceived winter thermal comfort conditions were satisfactory in only half of the dwellings, since the actual operating space heating periods averaged only 5 h (compared with the assumed 18 h in standard conditions), while less than half heated their entire dwellings and only a fifth maintained an indoor setpoint temperature of 20 °C, corresponding to standard comfort conditions. Mainstream energy conservation measures include system maintenance, switching to more efficient systems, reducing heat losses and installing controls. This information is then used to derive empirical adaptation factors for bridging the gap between the calculated and actual energy use, making more realistic estimates of the expected energy savings following building renovations, setting prudent targets for energy efficiency and developing effective plans toward a decarbonized building stock.


2021 ◽  
Vol 13 (4) ◽  
pp. 1595
Author(s):  
Valeria Todeschi ◽  
Roberto Boghetti ◽  
Jérôme H. Kämpf ◽  
Guglielmina Mutani

Building energy-use models and tools can simulate and represent the distribution of energy consumption of buildings located in an urban area. The aim of these models is to simulate the energy performance of buildings at multiple temporal and spatial scales, taking into account both the building shape and the surrounding urban context. This paper investigates existing models by simulating the hourly space heating consumption of residential buildings in an urban environment. Existing bottom-up urban-energy models were applied to the city of Fribourg in order to evaluate the accuracy and flexibility of energy simulations. Two common energy-use models—a machine learning model and a GIS-based engineering model—were compared and evaluated against anonymized monitoring data. The study shows that the simulations were quite precise with an annual mean absolute percentage error of 12.8 and 19.3% for the machine learning and the GIS-based engineering model, respectively, on residential buildings built in different periods of construction. Moreover, a sensitivity analysis using the Morris method was carried out on the GIS-based engineering model in order to assess the impact of input variables on space heating consumption and to identify possible optimization opportunities of the existing model.


2021 ◽  
Vol 13 (12) ◽  
pp. 6753
Author(s):  
Moiz Masood Syed ◽  
Gregory M. Morrison

As the population of urban areas continues to grow, and construction of multi-unit developments surges in response, building energy use demand has increased accordingly and solutions are needed to offset electricity used from the grid. Renewable energy systems in the form of microgrids, and grid-connected solar PV-storage are considered primary solutions for powering residential developments. The primary objectives for commissioning such systems include significant electricity cost reductions and carbon emissions abatement. Despite the proliferation of renewables, the uptake of solar and battery storage systems in communities and multi-residential buildings are less researched in the literature, and many uncertainties remain in terms of providing an optimal solution. This literature review uses the rapid review technique, an industry and societal issue-based version of the systematic literature review, to identify the case for microgrids for multi-residential buildings and communities. The study describes the rapid review methodology in detail and discusses and examines the configurations and methodologies for microgrids.


Biomimetics ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 50
Author(s):  
Negin Imani ◽  
Brenda Vale

The initial aim of the research was to develop a framework that would enable architects to look for thermoregulation methods in nature as inspiration for designing energy efficient buildings. The thermo-bio-architectural framework (ThBA) assumes designers will start with a thermal challenge in a building and then look in a systematic way for how this same issue is solved in nature. The tool is thus a contribution to architectural biomimicry in the field of building energy use. Since the ThBA was created by an architect, it was essential that the biology side of this cross-disciplinary tool was validated by experts in biology. This article describes the focus group that was conducted to assess the quality, inclusiveness, and applicability of the framework and why a focus group was selected over other possible methods such as surveys or interviews. The article first provides a brief explanation of the development of the ThBA. Given the focus here is on its validation, the qualitative data collection procedures and analysis results produced by NVivo 12 plus through thematic coding are described in detail. The results showed the ThBA was effective in bridging the two fields based on the existing thermal challenges in buildings, and was comprehensive in terms of generalising biological thermal adaptation strategies.


Sign in / Sign up

Export Citation Format

Share Document