Application Analysis and Economical Study on and Under-Floor Electric Heating System With Superconducting Liquid in China

Author(s):  
Guohua Shi ◽  
Xutao Zhang ◽  
Songtao Liu ◽  
Weitang Zhang ◽  
Hong Wang

An under-floor electric heating system with superconducting liquid was manufactured. This system can charge heat by using cheap nighttime electricity and discharge the heat stored at daytime, with the merits of decreasing electricity load. In the present work, the operating principle of the system is discussed, and its characteristics are analyzed. In order to study the system’s thermal property, one prototype room with the system and the other room with a heating cable system were set up in Beijing. The experimental results testify the feasibility and comfort of the heating mode and show that it can save 19% electric energy compared with the heating cable system. To analyze the economical efficiency of the system, an economic comparison was made. The result indicates that the system is most economical in comparison with other radiant floor heating systems.

Author(s):  
C. C. Ngo ◽  
C. G. Peinder

Radiant floor heating systems are becoming increasingly popular in green building designs. Typically, solar or geothermal energy is employed as a source for such hydronic heating systems. Buried heating pipe system can be used for heating both residential and industrial spaces as well as defrosting snow on walkways, driveways and sport fields. Most of the heating pipes considered in such applications are buried in a porous medium (i.e., insulation layer or soils). Hele-Shaw cells with different pipe spacing were constructed to simulate different floor heating configurations. The objective of the present experimental study is to examine the flow field within porous medium using the Hele-Shaw analogy. The flow visualization experiment was set up to investigate how a change in pipe spacing and pipe temperature would affect the flow patterns from the heated pipes. Using time-elapsed photographs, one observes that the flow fields for different pipe spacings with different buoyancy strengths display distinct characteristics.


Author(s):  
C. C. Ngo ◽  
B. A. Alhabeeb ◽  
M. Balestrieri

Radiant floor heating systems have become popular due to their advantages over conventional heating systems in residential, commercial and industrial spaces. They are also used for snow and ice melting and turf conditioning applications. This paper presents a general study focuses on the design of radiant floor heating systems and investigates the effect of design parameters such as pipe spacing (ranging from 4 in. to 12 in.), pipe depth (ranging from 2.5 in. to 6.5 in.) and pipe temperature (45 °C, 65 °C and 85 °C) on the performance of radiant floor heating system embedded in different mediums (air, gravel and sand). The experimental results showed that a radiant heating system with pipes embedded at a shallow burial depth and placed closer together resulted with a more desired floor temperature distribution. The average floor temperature was also higher when the piping system was embedded in an air-filled space instead of a porous medium such as gravel or sand.


1983 ◽  
Vol 105 (4) ◽  
pp. 469-474 ◽  
Author(s):  
M. Koyanagi ◽  
H. Hojo ◽  
A. Nagamune ◽  
J. Ogata

To transport highly viscous crude oil efficiently through pipelines, some electric heating systems have been conventionally used. But they include heating cables or tubes, which are troublesome in submarine pipeline construction. A new electric heating system without a cable has been developed and is applicable to long-distance submarine pipelines. This system has a coaxial steel pipe structure, using the pipes as a heater by applying AC current to this coaxial circuit. In this paper, electromagnetic analysis on this system, experimental study using a 30-m length test pipeline, and mechanical tests on the electric insulating structure of the system are described.


2020 ◽  
Vol 15 (1) ◽  
pp. 136-147
Author(s):  
Salma Taik ◽  
Bálint Kiss

Abstract This paper discusses the control of the electric energy consumption in a household equipped with smart devices. The household consumption pattern is the result of a two-level optimization framework. The scheduling of the electric appliances is determined by the first optimization, receiving Time of Use tariffs proposed by the utility company. The scheduler considers the consumer's preferences on the powering on for each appliance. Secondly a model predictive controller is developed to control the electric heating system based on energy constraints resulting from the appliance scheduling. Simulations show the energy efficiency and an optimized electricity cost of the strategy proposed.


2019 ◽  
Vol 19 (2) ◽  
pp. 48-55
Author(s):  
L. Năstase ◽  
H. Andrei ◽  
E. Lungu ◽  
Veronica Dulea ◽  
E. Diaconu

AbstractThe importance of the heating systems is given both by the quality brought to the social life and from the point of view of pollution. Environmental pollution, global energy crisis as well as global energy policy and our gas heating systems. This motivating reason for the heating system, in terms of their viability and pollution reductions, is the future. In this article a dual heating system is presented, while an electric heating system and one of the gases, the care is coordinated by a monitoring and control system. The operating strategy of the two systems is dictated by an algorithm and a cost optimization function. The use of a dual heating system is the result of comparative results regarding the measurement of the measures and the simulation of the algorithm.


2020 ◽  
Vol 15 (2) ◽  
pp. 63-68
Author(s):  
Richard Baláž

AbstractThe submitted article offers one of the possible options of a usage of photovoltaic panels for a domestic hot water preparation with an option to extra heating a heating system, and following recalculation of a produced electric energy amount in regards of a total return of the assembled system. An electric heating boiler combined with a heating option working on solid propellant was chosen for the experiment. The most frequently used combined electric storage tank was chosen as a classic option to heat domestic hot water.


2012 ◽  
Vol 204-208 ◽  
pp. 4234-4238
Author(s):  
Han Bing Qi ◽  
Fu Yun He ◽  
Qiu Shi Wang ◽  
Dong Li ◽  
Lin Lin

Radiant floor heating as a new type of energy-saving heating method has more and more used in modern building heating project. According to the different heat source, radiant floor heating is divided into low temperature hot-water floor radiant heating and electrical floor radiant heating. This paper analyzes the heat transfer process of structure layer of the low temperature hot-water and electrical floor radiant heating system, establishes two dimensional steady heat transfer mathematic model, numerical calculation using Fluent software. Respectively simulated when floor materials is different, the heat transfer process of low temperature hot-water floor radiant heating and electrical floor radiant heating system, The analysis results show that: for low temperature hot-water floor radiant heating, when floor material is soft wood, the ground temperature distribution is more uniform; for electrical floor radiant heating, when floor materials is marble, the ground temperature distribution is more uniform; electrical floor radiant heating is more energy saving, and temperature distribution in the ground of floor using the constant heat flux electric heating mode is more uniform than which using the low temperature hot water heating mode.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6530
Author(s):  
Krzysztof Nowak ◽  
Sławomir Rabczak

In winter, for our own safety, as well as for the comfort of the user, we are obliged to remove or mitigate the defects related to the accumulation of snow and ice on flat surfaces, such as: pavements, stairs, driveways, parking lots, roofs, squares, or sports fields. Snow and ice from these surfaces can be removed by a variety of methods. Chemical, mechanical, or heating methods are most often used. Mechanical and manual methods cannot always be used. They also often do not allow the complete removal of snow and ice from the surface. In chemical methods, the chemicals used can have a negative impact on the environment and the surface itself. Heating external surfaces using electric heating cables or liquid-filled pipes is one of the safest and most effective ways to remove snow and ice from the available methods. The article presents a technical concept of a car park heating system with the use of various heating systems. The main thesis of the work is the possibility of using heating systems to maintain the quality of external parking spaces in winter. The authors tried to prove that it is possible to use a number of heating systems based on commonly known energy carriers for this purpose. The concept was made for the conditions prevailing in Poland. The systems were compared in financial and ecological terms. The following systems were analyzed: electric heating, heating with the use of a heat pump with a vertical ground heat exchanger, and liquid heating with various heat sources (including heat from the district heating network, hard coal boiler, biomass boiler, fuel oil boiler, natural gas boiler). From a cognitive point of view, it was interesting to examine whether the proposed installation with a heat pump is technically feasible and economically and ecologically justified.


Author(s):  
Alexander Pavlov ◽  
Igor Plohov ◽  
Sergei Drozdov ◽  
Vadim Smirnov

The objectives of the study are to analyze the transients in heated pipelines using the finite element method and the achievement of reduction of energy losses during transportation of liquids in pipelines with electric heating systems by determining the optimal operating conditions and design parameters of the pipeline and electric heating system


Author(s):  
Alexander Pavlov ◽  
Igor Plohov

The article deals with electric heating systems applied in flowlines for providing their continued operation in wintertime. The problem of obtaining a given distribution of heat output along the length of the pipeline with electric heating system has been solved. It allows to maintain the same temperature sections being in different environments. As the object of investigation a polymer tube with an integrated electrical heating is chosen.


Sign in / Sign up

Export Citation Format

Share Document