Energy Consumption Simulation for Residential Buildings With Shading Devices in Different Regions

Author(s):  
Junjie Liu ◽  
Xiaojie Zhou ◽  
Zhihong Gao

With the development of energy saving, it is needed to calculate the energy consumption of the residential building, particularly accurate dynamic energy consumption. Fixed shading devices are wildly used to save building energy because they prevent undesirable heat coming through the windows during the “overheated period”, just as in summer, which can ameliorate the indoor environments and reduce the energy consumption of air-conditioning in summer. But they will also prevent solar energy which can be used in winter to enter windows. So it is very important to be able to determine the optimal shading devices of windows. The overhangs and vertical-shading devices are representative to study the different energy performance in summer and winter, in an actual dwell house. On the other hand, fixed shading devices can weaken the effect of daylighting, so we would take both the total energy consumption and rooms’ daylighting into account. In this study, we choose several typical dwelling houses in different cities located in north, south, west, east and central region of China respectively. We calculated energy consumption of those models by using Energyplus program, and compared the shading performance of horizontal and vertical shading devices, then optimal configuration dimensions of horizontal shading devices are recommended on the basis of different requirements for solar heat gains in winter and in summer for those typical dwelling houses.

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5836
Author(s):  
Ali Mohammed AL-Dossary ◽  
Daeung Danny Kim

In Saudi Arabia, residential buildings are one of the major contributors to total energy consumption. Even though there are abundant natural resources, it is somewhat difficult to apply them to building designs, as design variables, due to slow progress and private issues in Saudi Arabia. Thus, the present study demonstrated the development of sustainable residential building design by examining the daylighting and energy performance with design variables. Focusing on the daylighting system, the design variables were chosen, including window-to-wall ratios (WWR), external shading devices, and types of glazing. The illuminance level by these design variables in a building was evaluated by using daylight metrics, such as spatial daylight autonomy and annual sunlight exposure. Moreover, the building energy consumption with these design variables was analyzed by using energy simulation. As a result, the daylighting was improved with the increase in WWRs and the tinted double glazing, while these design options can cause overheating in a residential building. Among types of glazing, the double pane windows with a low-E coating showed better energy performance. Based on the results, it is necessary to find the proper design variables that can balance the daylighting and energy performance in residential buildings in hot climates.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4749
Author(s):  
Taesub Lim ◽  
Woong Seog Yim ◽  
Daeung Danny Kim

Accounting for more than half of buildings in South Korea, the energy consumed by residential buildings has become a main concern and the cooing demand has rapidly increased. To reduce energy consumption, several passive and active design strategies have generally been applied. However, there has been an increasing demand for high window-to-wall ratios in residential buildings, it is imperative to block sunlight into a building effectively. Focusing on the reduction of cooling energy consumption in a residential building, the present study assessed the daylight and energy performance of shading devices. Among various types of shading devices, the Venetian blind, horizontal louver, light shelf, and egg-crate were selected. The illuminance levels in three different areas in a building were measured. In addition, the annual cooling energy consumption by these shading devices was investigated. As a result, both daylight and energy performance varied with different design options of these shading devices. Because of the slight performance difference among shading devices, the artificial loads of two best shading devices were compared. In sum, the egg-crate shading was the most proper shading device to block sunlight as well as reduce the cooling energy consumption effectively.


2019 ◽  
Vol 136 ◽  
pp. 04096
Author(s):  
Lingkun Jia ◽  
Yiru Huang ◽  
Zhietie Yue ◽  
Perry Pei-Ju Yang

As one of the critical concepts in residential energy performance research field, shape coefficient has long been disputed for its validity of evaluating energy consumption. Although suggestions have been brought forward to try to optimize this concept, these proposals still have shortcomings and have not been tested. Based on analysing these existing optimizing proposals, this paper starts from prototype study and summarizes the problems of concept of shape coefficient in terms of definition and relationship with building energy. According to these current issues, the reason for negatively influencing the accuracy of shape coefficient with regard to assessing the building energy consumption is confirmed. By correcting the expression of shape coefficient through inserting a correction factor related to story height, corrected shape coefficient is proposed. Combined with built residential building samples, the corrected and original shape coefficient is contrasted at the macro statistical and micro experimental levels respectively. It is found that the new coefficient has closer correlation with residential building energy performance and is more accurate in evaluating the energy consumption.


2021 ◽  
Vol 16 (3) ◽  
pp. 109-134
Author(s):  
Suwen Jiang ◽  
Chen Wang ◽  
Jeffrey Boon Hui Yap ◽  
Heng Li ◽  
Lincoln C. Wood ◽  
...  

ABSTRACT The window system is generally regarded as the most vulnerable building system for the indoor energy performance of green buildings. Window systems are given significant attention by architects and engineers, especially in areas with long summer and high solar radiation such as the subtropics. This study aims to develop a standard window-to-floor ratio (WFR) system for green residential buildings in the subtropics. Using Autodesk Revit as the interface, a real high-rise residential building was digitalized and imported into Ecotect for energy consumption analysis. Comparative analyses were conducted to determine the optimal WFR for building energy efficiency. Results demonstrated 0.23 as the optimal WFR in Xiamen, one of the typical subtropical cities in Asia. Furthermore, accompanied by a four-sidefins sunshade device and a double glass window (DGW) with clear “glass+air gap+reflective” glass, the building energy consumption was further reduced by 34.47% compared to the initial model, which successfully met the optimization target of 30%, set according to the green building standard. The results of this study are helpful to architects and building engineers when designing or retrofitting green buildings as we provide specific support for design features for energy performance.


2015 ◽  
Vol 77 (15) ◽  
Author(s):  
Jibrin Hassan Suleiman ◽  
Saeed Balubaid ◽  
Nasiru Mohammed Zakari ◽  
Egba Ernest Ituma

Most of the developing countries experience rapid urbanization and population growth, Malaysia is among these countries as the population and the energy consumption in the country tremendously increased over the last few decades.  A major challenge is the rate of energy consumption in the country is tremendous going higher which is a threat as the country was listed 26th out of the 30 top greenhouse emitters in the world.  A survey was conducted on the ways occupants’ consumes energy in their residential buildings in relation to dwelling factors in the State of Johor Malaysia. Energy consumption of the residential owners was assessed using drop and pick self-administered questionnaire. The questionnaires were answered by each household heads. Air conditioning system, refrigeration system, kitchen appliances, bathroom and laundry appliances, lighting appliances as well as other home appliances was considered in the survey. Correlation analysis was used using Statistical Package for Social Sciences (SPSS) to analyze the results. The finding shows a positive relationship between dwelling factors.  r ≥ 0.3 and above between dwelling factors and residential building energy consumption. 


2013 ◽  
Vol 368-370 ◽  
pp. 1322-1326
Author(s):  
Guo Hui Jin ◽  
Huai Zhu Wang

With the rapid development of national economy in china, the proportion of the building consumption in energy consumption is rising year by year. This paper will analyze energy influence factors of consumption of residential building in Inner Mongolia. According to these factors, it will optimize the energy consumption of residential building energy saving research . In the end , the thesis will put up some measures to optimization of conserve energy and provide guidance and help for residential building energy conservation in Inner Mongolia.


2013 ◽  
Vol 409-410 ◽  
pp. 606-611 ◽  
Author(s):  
Zhen Yu ◽  
Wei Lin Zhang ◽  
Ting Yong Fang

Using the energy consumption simulation software to research the HVAC in fall air conditioning mode, different building orientation and window-wall ratio of the office building energy consumption. The study found that the heating energy consumption, air-conditioning energy consumption and total energy consumption is gradually increased with the increase of the window-wall ratio under the same orientation. The result provides some reference for public buildings in setting of building orientation and window-wall ratio.


Author(s):  
Hua Chen ◽  
Qianqian Di

To improve the applicability of water-cooled air-conditioners in the domestic sector, the development of a prediction model for energy performance analysis is needed. This paper addressed the development of an empirical model for predicting the operation performance and the annual energy consumption for the use of water-cooled air-conditioners. An experimental prototype was set up and tested in an environmental chamber in validating the empirical model. The predictions compared well with the experimental results. Furthermore, a high-rise residential building whole-year energy consumption simulation on applications of water-cooled air conditioners in South china was also analyzed. The results show 20.4% energy savings over air-cooled units while the increase in water-side consumption is 31.1%. The overall energy savings were estimated at 16.2% when including the additional water costs.


2020 ◽  
Vol 12 (11) ◽  
pp. 4726 ◽  
Author(s):  
Qiong He ◽  
S. Thomas Ng ◽  
Md. Uzzal Hossain ◽  
Godfried L. Augenbroe

This study presents a data-driven retrofitting approach by systematically analyzing the energy performance of existing high-rise residential buildings using a normative calculation logic-based simulation method. To demonstrate the practicality of the approach, typical existing buildings in five climate zones of China are analyzed based on the local building characteristics and climatic conditions. The results show that the total energy consumption is 544 kWh/m2/year in the severe cold zone, which is slightly higher than that in the cold zone (519 kWh/m2/year), but double that in the hot summer and cold winter zone, three times higher than that in the warm zone, and five times above that in the temperate zone. The dominant energy needs in different climatic zones are distinctive. The identified potentially suitable retrofitting measures are important in reducing large-scale energy consumption and can be used in supporting sustainable retrofit decisions for existing high-rise residential buildings in different climatic zones.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2842 ◽  
Author(s):  
Daniel Mann ◽  
Cindy Yeung ◽  
Roberto Habets ◽  
Zeger Vroon ◽  
Pascal Buskens

The building sector contributes approximately one third of the total energy consumption worldwide. A large part of this energy is used for the heating and cooling of buildings, which can be drastically reduced by use of energy-efficient glazing. In this study, we performed building energy simulations on a prototypical residential building, and compared commercially available static (low-e, solar IR blocking) to newly developed adaptive thermochromic glazing systems for various climate regions. The modeling results show that static energy-efficient glazing is mainly optimized for either hot climates, where low solar heat gain can reduce cooling demands drastically, or cold climates, where low-e properties have a huge influence on heating demands. For intermediate climates, we demonstrate that adaptive thermochromic glazing in combination with a low-e coating is perfectly suited. The newly developed thermochromic glazing can lead to annual energy consumption improvement of up to 22% in comparison to clear glass, which exceeds all other glazing systems. Furthermore, we demonstrate that in the Netherlands the use of this new glazing system can lead to annual cost savings of EU 638 per dwelling (172 m2, 25% window façade), and to annual nationwide CO2 savings of 4.5 Mt. Ergo, we show that further development of thermochromic smart windows into market-ready products can have a huge economic, ecological and societal impact on all intermediate climate region in the northern hemisphere.


Sign in / Sign up

Export Citation Format

Share Document