DEVELOPING STANDARD WINDOW TO FLOOR RATIO (WFR) SYSTEM FOR GREEN RESIDENTIAL BUILDINGS IN SUBTROPICS

2021 ◽  
Vol 16 (3) ◽  
pp. 109-134
Author(s):  
Suwen Jiang ◽  
Chen Wang ◽  
Jeffrey Boon Hui Yap ◽  
Heng Li ◽  
Lincoln C. Wood ◽  
...  

ABSTRACT The window system is generally regarded as the most vulnerable building system for the indoor energy performance of green buildings. Window systems are given significant attention by architects and engineers, especially in areas with long summer and high solar radiation such as the subtropics. This study aims to develop a standard window-to-floor ratio (WFR) system for green residential buildings in the subtropics. Using Autodesk Revit as the interface, a real high-rise residential building was digitalized and imported into Ecotect for energy consumption analysis. Comparative analyses were conducted to determine the optimal WFR for building energy efficiency. Results demonstrated 0.23 as the optimal WFR in Xiamen, one of the typical subtropical cities in Asia. Furthermore, accompanied by a four-sidefins sunshade device and a double glass window (DGW) with clear “glass+air gap+reflective” glass, the building energy consumption was further reduced by 34.47% compared to the initial model, which successfully met the optimization target of 30%, set according to the green building standard. The results of this study are helpful to architects and building engineers when designing or retrofitting green buildings as we provide specific support for design features for energy performance.

Author(s):  
Junjie Liu ◽  
Xiaojie Zhou ◽  
Zhihong Gao

With the development of energy saving, it is needed to calculate the energy consumption of the residential building, particularly accurate dynamic energy consumption. Fixed shading devices are wildly used to save building energy because they prevent undesirable heat coming through the windows during the “overheated period”, just as in summer, which can ameliorate the indoor environments and reduce the energy consumption of air-conditioning in summer. But they will also prevent solar energy which can be used in winter to enter windows. So it is very important to be able to determine the optimal shading devices of windows. The overhangs and vertical-shading devices are representative to study the different energy performance in summer and winter, in an actual dwell house. On the other hand, fixed shading devices can weaken the effect of daylighting, so we would take both the total energy consumption and rooms’ daylighting into account. In this study, we choose several typical dwelling houses in different cities located in north, south, west, east and central region of China respectively. We calculated energy consumption of those models by using Energyplus program, and compared the shading performance of horizontal and vertical shading devices, then optimal configuration dimensions of horizontal shading devices are recommended on the basis of different requirements for solar heat gains in winter and in summer for those typical dwelling houses.


2019 ◽  
Vol 136 ◽  
pp. 04096
Author(s):  
Lingkun Jia ◽  
Yiru Huang ◽  
Zhietie Yue ◽  
Perry Pei-Ju Yang

As one of the critical concepts in residential energy performance research field, shape coefficient has long been disputed for its validity of evaluating energy consumption. Although suggestions have been brought forward to try to optimize this concept, these proposals still have shortcomings and have not been tested. Based on analysing these existing optimizing proposals, this paper starts from prototype study and summarizes the problems of concept of shape coefficient in terms of definition and relationship with building energy. According to these current issues, the reason for negatively influencing the accuracy of shape coefficient with regard to assessing the building energy consumption is confirmed. By correcting the expression of shape coefficient through inserting a correction factor related to story height, corrected shape coefficient is proposed. Combined with built residential building samples, the corrected and original shape coefficient is contrasted at the macro statistical and micro experimental levels respectively. It is found that the new coefficient has closer correlation with residential building energy performance and is more accurate in evaluating the energy consumption.


2013 ◽  
Vol 368-370 ◽  
pp. 1308-1313
Author(s):  
Zhi Hong Li ◽  
Li Hua Zhao ◽  
Xiao Shan Yang

Nowadays, greenhouse effect and energy shortage are becoming more and more fiercely, the development of the green building is the necessary choice to building sustainable development. Building energy efficiency is one of the most important parts of green building, and the draft of Assessment standard for green building puts forward clear requirements for decreasing energy consumption just by improving the thermal performance of the envelop to get more score for declaring the green building label project. In view of the scale extending of the green building label project in the future, the paper studied on the energy efficiency design of the residential envelop in Guangzhou by investigation and simulation to achieve the decreasing ranges of energy consumption more than 10% of building energy efficiency standard value, and provided a technical measures for the energy efficiency ratio 60% just by improving the thermal performance of the envelop.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 442
Author(s):  
Xiaoyue Zhu ◽  
Bo Gao ◽  
Xudong Yang ◽  
Zhong Yu ◽  
Ji Ni

In China, a surging urbanization highlights the significance of building energy conservation. However, most building energy-saving schemes are designed solely in compliance with prescriptive codes and lack consideration of the local situations, resulting in an unsatisfactory effect and a waste of funds. Moreover, the actual effect of the design has yet to be thoroughly verified through field tests. In this study, a method of modifying conventional building energy-saving design based on research into the local climate and residents’ living habits was proposed, and residential buildings in Panzhihua, China were selected for trial. Further, the modification scheme was implemented in an actual project with its effect verified by field tests. Research grasps the precise climate features of Panzhihua, which was previously not provided, and concludes that Panzhihua is a hot summer and warm winter zone. Accordingly, the original internal insulation was canceled, and the shading performance of the windows was strengthened instead. Test results suggest that the consequent change of SET* does not exceed 0.5 °C, whereas variations in the energy consumption depend on the room orientation. For rooms receiving less solar radiation, the average energy consumption increased by approximately 20%, whereas for rooms with a severe western exposure, the average energy consumption decreased by approximately 11%. On the other hand, the cost savings of removing the insulation layer are estimated at 177 million RMB (1 USD ≈ 6.5 RMB) per year. In conclusion, the research-based modification method proposed in this study can be an effective tool for improving building energy efficiency adapted to local conditions.


2015 ◽  
Vol 77 (15) ◽  
Author(s):  
Jibrin Hassan Suleiman ◽  
Saeed Balubaid ◽  
Nasiru Mohammed Zakari ◽  
Egba Ernest Ituma

Most of the developing countries experience rapid urbanization and population growth, Malaysia is among these countries as the population and the energy consumption in the country tremendously increased over the last few decades.  A major challenge is the rate of energy consumption in the country is tremendous going higher which is a threat as the country was listed 26th out of the 30 top greenhouse emitters in the world.  A survey was conducted on the ways occupants’ consumes energy in their residential buildings in relation to dwelling factors in the State of Johor Malaysia. Energy consumption of the residential owners was assessed using drop and pick self-administered questionnaire. The questionnaires were answered by each household heads. Air conditioning system, refrigeration system, kitchen appliances, bathroom and laundry appliances, lighting appliances as well as other home appliances was considered in the survey. Correlation analysis was used using Statistical Package for Social Sciences (SPSS) to analyze the results. The finding shows a positive relationship between dwelling factors.  r ≥ 0.3 and above between dwelling factors and residential building energy consumption. 


2013 ◽  
Vol 368-370 ◽  
pp. 1322-1326
Author(s):  
Guo Hui Jin ◽  
Huai Zhu Wang

With the rapid development of national economy in china, the proportion of the building consumption in energy consumption is rising year by year. This paper will analyze energy influence factors of consumption of residential building in Inner Mongolia. According to these factors, it will optimize the energy consumption of residential building energy saving research . In the end , the thesis will put up some measures to optimization of conserve energy and provide guidance and help for residential building energy conservation in Inner Mongolia.


2018 ◽  
Vol 22 (Suppl. 5) ◽  
pp. 1499-1509
Author(s):  
Miomir Vasov ◽  
Jelena Stevanovic ◽  
Veliborka Bogdanovic ◽  
Marko Ignjatovic ◽  
Dusan Randjelovic

Buildings are one of the biggest energy consumers in urban environments, so its efficient use represents a constant challenge. In public objects and households, a large part of the energy is used for heating and cooling. The orientation of the object, as well as the overall heat transfer coefficient (U-value) of transparent and non-transparent parts of the envelope, can have a significant impact on building energy needs. In this paper, analysis of the influence of different orientations, U-values of envelope elements, and size of windows on annual heating and cooling energy for an office building in city of Nis, Serbia, is presented. Model of the building was made in the Google SketchUp software, while the results of energy performance were obtained using EnergyPlus and jEplus, taking into ac-count the parameters of thermal comfort and climatic data for the area of city of Nis. Obtained results showed that, for varied parameters, the maximum difference in annual heating energy is 15129.4 kWh, i. e per m2 27.75 kWh/m2, while the maximum difference in annual cooling energy is 14356.1 kWh, i. e per m2 26.33 kWh/m2. Considering that differences in energy consumption are significant, analysis of these parameters in the early stage of design process can affect on increase of building energy efficiency.


Author(s):  
Hua Chen ◽  
Qianqian Di

To improve the applicability of water-cooled air-conditioners in the domestic sector, the development of a prediction model for energy performance analysis is needed. This paper addressed the development of an empirical model for predicting the operation performance and the annual energy consumption for the use of water-cooled air-conditioners. An experimental prototype was set up and tested in an environmental chamber in validating the empirical model. The predictions compared well with the experimental results. Furthermore, a high-rise residential building whole-year energy consumption simulation on applications of water-cooled air conditioners in South china was also analyzed. The results show 20.4% energy savings over air-cooled units while the increase in water-side consumption is 31.1%. The overall energy savings were estimated at 16.2% when including the additional water costs.


Sign in / Sign up

Export Citation Format

Share Document