Fast Pyrolysis of Biomass With Activated Alumina

Author(s):  
Funda Ates¸

In this study, corncob was chosen as a biomass sample and the pyrolysis of this sample was carried out with or without catalyst at different conditions in a well-swept fixed-bed reactor. In the experimental studies, firstly the raw material was analysed for its moisture, ash, volatile matter and fixed carbon. Then, experiments were conducted with a heating rate of 700 °C/min, mean particle size and between 300–800 °C pyrolysis temperatures with or without catalyst. The catalytic experiments involved a dry mixing of the catalyst with the biomass using an in bed-mode in the nitrogen atmosphere. In the experimental studies, influence of catalyst and temperature on the corncob products was investigated. According to the experimental results; maximum bio-oil yield was obtained as 36.1% and 34.8% with or without catalyst at a pyrolysis temperature of 500°C, respectively. The use of catalyst showed its cracking effect at higher temperatures and the gas yield increased above pyrolysis temperature of 500 °C. Pyrolysis oils were examined by using elemental analysis and GC/MS. According to all results; the use of catalyst can be suggested in the pyrolysis to obtain both good quality fuels and valuable chemicals.

Author(s):  
Funda Ates ◽  
Ayse Eren Putun ◽  
Ersan Putun

Terpene hydrocarbons are high energy capacity hydrocarbons. The most known terpenoid biomass is Euphorbiaceae family. Euphorbia rigida, a member of Euphorbiaceae, was used as the biomass feedstock and natural zeolite was used as the catalyst in this study. In the experimental studies, firstly the raw material was analysed for its moisture, ash, volatile matter and fixed carbon. Then experiments were carried out in steam atmosphere in a fixed-bed reactor with a heating rate of 7 K/min, pyrolysis temperature of 823 K and mean particular size of 0.55 mm by mixing the catalyst to feedstock in different percentages. Experiments were performed with the catalyst ratios of 5, 10, 20 and 25 (weight-%) under steam atmosphere with the velocities of 12, 25 and 52 cm3/min to determine the effect of catalyst and steam on the product yields and bio-oil composition. Steam velocities were considered as the average steam velocities in the inlet tube of the reactor. The maximum bio-oil was reached to a value of 39.7% when using catalyst ratio of 20% and steam flow rate of 25 cm3/min. Pyrolysis oils were examined by using elemental analysis, IR and 1H-NMR spectroscopy. The liquid products were also fractionated by column chromatography and the gas chromatographic analysis of n-pentane eluate was performed.


Author(s):  
O¨zlem Onay ◽  
O¨. Mete Koc¸kar

In this study, the safflower seed (Carthamus tinctorius L.) was used as biomass sample for catalytic pyrolysis using commercial catalyst (Criterion-454) in the nitrogen atmosphere. Experimental studies were conducted in a well-swept resistively heated fixed bed reactor with a heating rate of 300°Cmin−1, a final pyrolysis temperature of 550°C and particle size of 0.6–0.85 mm. In order to establish the effect of catalyst ratio on the pyrolysis yields, experiments were conducted at a range of catalyst ratios between 1, 3, 5, 7, 10, 20% (w/w). The bio-oils were characterized by elemental analysis and some spectroscopic and chromatographic techniques.


2021 ◽  
Vol 323 ◽  
pp. 00003
Author(s):  
Artur Bieniek ◽  
Wojciech Jerzak ◽  
Aneta Magdziarz

Biomass pyrolysis is an advanced process which leads to obtaining products as chars, primary tars and gases. Depending on pyrolysis conditions and reactor construction, the pyrolysis could be divided into three categories: slow, intermediate and fast. This work concerns the experimental analysis of an intermediate pyrolysis of biomass residues in a fixed bed reactor. As raw materials, pine bark and wheat straw were selected. Experiments were carried out at three temperatures: 400, 500 and 600 °C under constant volume flow rate of inert gas equal to 100 ml/min. Biomass samples were kept for 150 seconds in the hot zone. The main goal was to compare yields, elemental composition, and calorific values of received products under studied process conditions. The ultimate analysis of chars and organic fractions of oils was performed. Obtained results from ultimate analysis allowed to determine higher heating values by a theoretical correlation. The products of pyrolysis obtained at 600 °C characterized by the most energetic parameters. The higher heating value for organic fraction of tars was 31.62 MJ/kg while for char was 29.47 MJ/kg.


2020 ◽  
Vol 849 ◽  
pp. 47-52
Author(s):  
Siti Jamilatun ◽  
Aster Rahayu ◽  
Yano Surya Pradana ◽  
Budhijanto ◽  
Rochmadi ◽  
...  

Nowadays, energy consumption has increased as a population increases with socio-economic developments and improved living standards. Therefore, it is necessary to find a replacement for fossil energy with renewable energy sources, and the potential to develop is biofuels. Bio-oil, water phase, gas, and char products will be produced by utilizing Spirulina platensis (SPR) microalgae extraction residue as pyrolysis raw material. The purpose of this study is to characterize pyrolysis products and bio-oil analysis with GC-MS. Quality fuel is good if O/C is low, H/C is high, HHV is high, and oxygenate compounds are low, but aliphatic and aromatic are high. Pyrolysis was carried out at a temperature of 300-600°C with a feed of 50 grams in atmospheric conditions with a heating rate of 5-35°C/min, the equipment used was a fixed-bed reactor. The higher the pyrolysis temperature, the higher the bio-oil yield will be to an optimum temperature, then lower. The optimum temperature of pyrolysis is 550°C with a bio-oil yield of 23.99 wt%. The higher the pyrolysis temperature, the higher the H/C, the lower O/C. The optimum condition was reached at a temperature of 500°C with the values of H/C, and O/C is 1.17 and 0.47. With an increase in temperature of 300-600°C, HHV increased from 11.64 MJ/kg to 20.63 MJ/kg, the oxygenate compound decreased from 85.26 to 37.55 wt%. Aliphatics and aromatics increased, respectively, from 5.76 to 36.72 wt% and 1.67 to 6.67 wt%.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Munique Gonçalves Guimarães ◽  
Rafael Benjamin Werneburg Evaristo ◽  
Augusto César de Mendonça Brasil ◽  
Grace Ferreira Ghesti

AbstractThe present work analyzed the energy generation potential of Buriti (Mauritia flexuosa L. f.) by thermochemical reactions. The experimental part of the study performed immediate analyses, elemental analyses, lignocellulosic analysis, thermogravimetric analysis, calorific values, and syn gas concentrations measurements of the gasification of Buriti in a fixed-bed reactor. Additionally, numerical simulations estimated the syn gas concentrations of the gasification reactions of Buriti. The immediate analysis showed that Buriti has the highest ash content (4.66%) and highest volatile matter content (85%) compared to other Brazilian biomass analyzed, but the higher heating value was only 18.28 MJ.kg−1. The elemental analysis revealed that the oxygen to carbon ratio was 0.51 while hydrogen to carbon ratio was 1.74, indicating a good thermal conversion efficiency. The Lignocellulosic analysis of Buriti resulted in a high content of holocellulose (69.64%), a lignin content of 28.21% and extractives content of 7.52%. The thermogravimetry of the Buriti indicated that the highest mass loss (51.92%) occurred in a temperature range between 150 °C and 370 °C. Lastly, the experimental gasification study in a fixed-bed updraft gasifier resulted in syn gas concentrations of 14.4% of CO, 11.5% of CO2 and 17.5% of H2 while the numerical simulation results confirmed an optimal equivalence ratio of 1.7 to maximize CO and H2 concentrations. Therefore, based on the results presented by the present work, the gasification process is adequate to transform Buriti wastes into energy resources. Graphic abstract


1991 ◽  
Vol 23 (7-9) ◽  
pp. 1319-1326 ◽  
Author(s):  
I. E. Gönenç ◽  
D. Orhon ◽  
B. Beler Baykal

Two basic phenomena, reactor hydraulics and mass transport through biofilm coupled with kinetic expressions for substrate transformations were accounted for in order to describe the soluble COD removal mechanism in anaerobic fixed bed reactors. To provide necessary verification, experimental results from the long term operation of the pilot scale anaerobic reactor treating molasses wastewater were used. Theoretical evaluations verified by these experimental studies showed that a bulk zero-order removal rate expression modified by diffusional resistance leading to bulk half-order and first-order rates together with the particular hydraulic conditions could adequately define the overall soluble COD removal mechanism in an anaerobic fixed bed reactor. The experimental results were also used to determine the kinetic constants for practical application. In view of the complexity of the phenomena involved it is found remarkable that a simple simulation model based on biofilm kinetics is a powerful tool for design and operation of anaerobic fixed bed reactors.


2011 ◽  
Vol 393-395 ◽  
pp. 1212-1216 ◽  
Author(s):  
Huan Wang ◽  
Yong Fa Diao

As to figure out the effect that modified fly ash, which is prepared by fly ash –CaO, and modified fly ash dust layer attached on the surface of the filter material adsorbed elemental mercury, experimental studies are administrated in a laboratory-scale fixed bed reactor system with gaseous elemental mercury produced by a mercury vapor generator and simulated flue gas composition. The experimental results indicated that the adsorption performance of fly ash and CaO relatively poor. The proportion of CaO in the modified fly ash will affected the mercury removal efficiency of the absorbent which prepared by fly ash and CaO. It will be an optimal effect when the blend ratio of the flying ash and CaO is 2 to 1, and the maximum removal efficiency is up to 34%.As the adsorption temperature increases the removal efficiency of the modified fly ash deteriorates. The efficiency of dust layer attaching on the surface of the filter material is getting higher with the larger porosity of dust layer and smaller particle material size.


2015 ◽  
Vol 787 ◽  
pp. 67-71
Author(s):  
R.M. Alagu ◽  
E. Ganapathy Sundaram

Pyrolysis process in a fixed bed reactor was performed to derive pyrolytic oil from groundnut shell. Experiments were conducted with different operating parameters to establish optimum conditions with respect to maximum pyrolytic oil yield. Pyrolysis process was carried out without catalyst (thermal pyrolysis) and with catalyst (catalytic pyrolysis). The Kaolin is used as a catalyst for this study. The maximum pyrolytic oil yield (39%wt) was obtained at 450°C temperature for 1.18- 2.36 mm of particle size and heating rate of 60°C/min. The properties of pyrolytic oil obtained by thermal and catalytic pyrolysis were characterized through Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) techniques to identify the functional groups and chemical components present in the pyrolytic oil. The study found that catalytic pyrolysis produce more pyrolytic oil yield and improve the pH value, viscosity and calorific value of the pyrolytic oil as compared to thermal pyrolysis.


2014 ◽  
Vol 931-932 ◽  
pp. 225-230
Author(s):  
Khanita Kamwilaisak ◽  
Mallika Thabuot

The aim of this study is to use pyrolysis reaction to produce oil product as a fuel or chemical feedstock. The fixed bed reactor was used as a pyrolysis system. The pyrolysis reaction of residual para rubber was operated in the absence of catalyse. The operating conditions such as particle size (0.5 and 1.0 cm3) and pyrolysis temperature (500, 550 and 600 OC) were studied under N2 conditions and retention time 90 min. The result shows the para rubber size 1.0 cm3 can be produced liquid phase more than of para rubber size of 0.5 cm3. The optimised condition with the highest oil yield was at 550OC with rubber size of 1.0 cm3. The percentage of the product was 60% of liquid, 35% of gas and 5% of solid (char). Furthermore, the FTIR result can be presented the supported evidence that the transformation of aliphatic contents to be aromatic contents was increased with increased temperature. Also, GCMS analysis was used for the identification and quantification of the product. It was found 5 major products that can be used as a chemical feedstock. The maximum amount of component was 2-Benzenedicarboxylic acid, diisooctyl ester (Isooctyl phthalate) with 22.08%. This is a plasticizer with higher cost than fuel.


Sign in / Sign up

Export Citation Format

Share Document