Numerical Study of Supercritical CO2 Convective Heat Transfer for Advanced Brayton Cycles for Concentrated Solar Power

Author(s):  
Scott M. Flueckiger ◽  
Suresh V. Garimella ◽  
Eckhard A. Groll

Advancement of supercritical carbon dioxide Brayton cycle technology in concentrated solar power plants requires an improved understanding of duct-flow convection in the supercritical region. Numerical simulation, based on a modified carbon dioxide hot gas bypass load stand with an external heat source, is conducted to determine carbon dioxide convective heat transfer coefficients at supercritical pressures and temperatures beyond the range for which results are available in the literature. The simulation geometry is derived from the heated test section included in the physical load stand. Inlet pressure, temperature, and mass flux are varied to assess the influence on Nusselt number. Cases that achieve fully developed flow and temperature conditions inside the tube geometry agree with predictions from a Nusselt number correlation in the literature with a mean absolute error of 6.4 percent, less than the 6.8% average error reported for the correlation. This agreement includes pressure and temperature conditions outside the defined range of the correlation. Future experiments will provide additional validation of the model and correlation, enabling analysis farther into the supercritical region necessary for Brayton cycle operation.

2021 ◽  
Author(s):  
AmirAbbas Sartipi

Domed skylights are important architectural design elements to deliver daylight and solar heat into buildings and connect buildings' occupants to outdoors. To increase the energy efficiency of skylighted buildings, domed skylights employ a number of glazing layers forming enclosed spaces. The latter are subject to complex buoyancy-induced convection heat transfer. Currently, existing fenestration design computer tools and building energy simulation programs do not, however, cover such skylights to quantify their energy performance when installed in buildings. his work presents a numerical study on natural laminar convection within concentric and vertically eccentric domed cavities. The edges of domed cavities are assumed adiabatic and the temperature of the interior and exterior surfaces are uniform and constant. The concentric and vertically eccentric domed cavities were studied when heated from inside and heated from outside, respectively. A commercial CFD package employing the control volume approach is used to solve the laminar convective heat transfer within the cavity. The obtained results showed steady flow for small Grashof numbers. For moderate and large Grashof numbers, depending on the gap ratio and the cases of heating from inside or outside, the flow may be steady or transient periodic with a single vortex-cell or multi vortex-cells. The Nusselt number for the case of heated from inside is greater than the case of heated from outside. The numerical results show that the changes in the gap ratio have smaller effect on Nusselt number in high profile domed skylights than lower profile domed skylights.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anuj Kumar Shukla ◽  
Anupam Dewan

Purpose Convective heat transfer features of a turbulent slot jet impingement are comprehensively studied using two different computational approaches, namely, URANS (unsteady Reynolds-averaged Navier–Stokes equations) and SAS (scale-adaptive simulation). Turbulent slot jet impingement heat transfer is used where a considerable heat transfer enhancement is required, and computationally, it is a quite challenging flow configuration. Design/methodology/approach Customized OpenFOAM 4.1, an open-access computational fluid dynamics (CFD) code, is used for SAS (SST-SAS k-ω) and URANS (standard k-ε and SST k-ω) computations. A low-Re version of the standard k-ε model is used, and other models are formulated for good wall-refined calculations. Three turbulence models are formulated in OpenFOAM 4.1 with second-order accurate discretization schemes. Findings It is observed that the profiles of the streamwise turbulence are under-predicted at all the streamwise locations by SST k-ω and SST SAS k-ω models, but follow similar trends as in the reported results. The standard k-ε model shows improvements in the predictions of the streamwise turbulence and mean streamwise velocity profiles in the zone of outer wall jet. Computed profiles of Nusselt number by SST k-ω and SST-SAS k-ω models are nearly identical and match well with the reported experimental results. However, the standard k-ε model does not provide a reasonable profile or quantification of the local Nusselt number. Originality/value Hybrid turbulence model is suitable for efficient CFD computations for the complex flow problems. This paper deals with a detailed comparison of the SAS model with URANS and LES for the first time in the literature. A thorough assessment of the computations is performed against the results reported using experimental and large eddy simulations techniques followed by a detailed discussion on flow physics. The present results are beneficial for scientists working with hybrid turbulence models and in industries working with high-efficiency cooling/heating system computations.


2009 ◽  
Vol 131 (8) ◽  
Author(s):  
Zhi-Min Lin ◽  
Liang-Bi Wang

The secondary flow has been used frequently to enhance the convective heat transfer, and at the same flow condition, the intensity of convective heat transfer closely depends on the thermal boundary conditions. Thus far, there is less reported information about the sensitivity of heat transfer enhancement to thermal boundary conditions by using secondary flow. To account for this sensitivity, the laminar convective heat transfer in a circular tube fitted with twisted tape was investigated numerically. The effects of conduction in the tape on the Nusselt number, the relationship between the absolute vorticity flux and the Nusselt number, the sensitivity of heat transfer enhancement to the thermal boundary conditions by using secondary flow, and the effects of secondary flow on the flow boundary layer were discussed. The results reveal that (1) for fully developed laminar heat convective transfer, different tube wall thermal boundaries lead to different effects of conduction in the tape on heat transfer characteristics; (2) the Nusselt number is closely dependent on the absolute vorticity flux; (3) the efficiency of heat transfer enhancement is dependent on both the tube wall thermal boundaries and the intensity of secondary flow, and the ratio of Nusselt number with twisted tape to its counterpart with straight tape decreases with increasing twist ratio while it increases with increasing Reynolds number for both uniform wall temperature (UWT) and uniform heat flux (UHF) conditions; (4) the difference in the ratio between UWT and UHF conditions is also strongly dependent on the conduction in the tape and the intensity of the secondary flow; and (5) the twist ratio ranging from 4.0 to 6.0 does not necessarily change the main flow velocity boundary layer near tube wall, while Reynolds number has effects on the shape of the main flow velocity boundary layer near tube wall only in small regions.


Author(s):  
Guillermo E. Valencia ◽  
Miguel A. Ramos ◽  
Antono J. Bula

The paper describes an experimental procedure performed to obtain the convective heat transfer coefficient of Al2O3 nanofluid working as cooling fluid under turbulent regimen through arrays of aluminum microchannel heat sink having a diameter of 1.2 mm. Experimental Nusselt number correlation as a function of the volume fractions, Reynolds, Peclet and Prandtl numbers for a constant heat flux boundary condition is presented. The correlation for Nusselt number has a good agreement with experimental data and can be used to predict heat transfer coefficient for this specific nanofluid, water/Al2O3. Furthermore, the pressure drop is also analyzed considering the different nanoparticles concentration.


2018 ◽  
Vol 29 (10) ◽  
pp. 1850097 ◽  
Author(s):  
Abderrahmane Baïri ◽  
Najib Laraqi

This three-dimensional (3D) numerical work based on the volume control method quantifies the convective heat transfer occurring in a hemispherical cavity filled with a ZnO–H2O nanofluid saturated porous medium. Its main objective is to improve the cooling of an electronic component contained in this enclosure. The volume fraction of the considered monophasic nanofluid varies between 0% (pure water) and 10%, while the cupola is maintained isothermal at cold temperature. During operation, the active device generates a heat flux leading to high Rayleigh number reaching [Formula: see text] and may be inclined with respect to the horizontal plane at an angle ranging from 0[Formula: see text] to 180[Formula: see text] (horizontal position with cupola facing upwards and downwards, respectively) by steps of 15[Formula: see text]. The natural convective heat transfer represented by the average Nusselt number has been quantified for many configurations obtained by combining the tilt angle, the Rayleigh number, the nanofluid volume fraction and the ratio between the thermal conductivity of the porous medium’s solid matrix and that of the base fluid. This ratio has a significant influence on the free convective heat transfer and ranges from 0 (without porous media) to 70 in this work. The influence of the four physical parameters is analyzed and commented. An empirical correlation between the Nusselt number and these parameters is proposed, allowing determination of the average natural convective heat transfer occurring in the hemispherical cavity.


Author(s):  
Francisco P. Brójo ◽  
Luís C. Gonçalves ◽  
Pedro D. Silva

The scope of the present work is to characterize the heat transfer between a ribbed surface and an air flow. The convective heat transfer coefficients, the Stanton number and the Nusselt number were calculated in the Reynolds number range, 5.13 × 105 to 1.02 × 106. The tests were performed inside a turbulent wind tunnel with one roughness height (e/Dh = 0.07). The ribs had triangular section with an attack angle of 60°. The surface temperatures were measured using an infrared (IR) thermographic equipment, which allows the measurement of the temperature with a good spatial definition (10.24 × 10−6 m2) and a resolution of 0.1°C. The experimental measures allowed the calculation of the convective heat transfer coefficient, the Stanton number and the Nusselt number. The results obtained suggested a flow pattern that includes both reattachment and recirculation. Low values of the dimensionless Stanton number, i.e. Stx*, are obtained at the recirculation zones and very high values of Stx* at the zones of reattachment. The reattachment is located at a dimensionless distance of 0.38 from the top of the rib. That distance seems to be independent of the Reynolds number. The local dimensionless Stanton number remains constant as the Reynolds number varies. The convective heat transfer coefficient presents an uncertainty in the range of 3 to 6%.


2013 ◽  
Vol 388 ◽  
pp. 169-175 ◽  
Author(s):  
Amirhossein Heshmati ◽  
Hussein A. Mohammed ◽  
Mohammad Parsazadeh ◽  
Farshid Fathinia ◽  
Mazlan A. Wahid ◽  
...  

In this study, forced convective heat transfer is considered in channel over a backward facing step having a baffle on the top wall. Four different geometries with different expansion ratios and different type of baffles are numerically investigated. The study clearly shows that the geometry with expansion ratio 2 and solid baffle has the highest Nusselt number compared to other geometries. Considering both Nusselt number and skin friction coefficient for all four geometries clearly illustrated an increase in average Nusselt number by increasing the expansion ratio. This study clearly shows that mounting a slotted baffle at the top wall instead of a solid baffle caused a decline in average Nusselt number. It is also found that for geometry with expansion ratio of 3 and a slotted baffle on the top of the channel, skin friction coefficient in both bottom wall and step wall has its minimal compared to other geometries.


1986 ◽  
Vol 108 (1) ◽  
pp. 33-39 ◽  
Author(s):  
M. A. Ebadian ◽  
H. C. Topakoglu ◽  
O. A. Arnas

The convective heat transfer problem along the portion of a tube of elliptic cross section maintained under a constant wall temperature where hydrodynamically and thermally fully developed flow conditions prevail is solved in this paper. The successive approximation method is used for the solution utilizing elliptic coordinates. Analytical expressions for temperature distribution and Nusselt number corresponding to the first cycle of approximation are obtained in terms of the ellipticity of the cross section. In the case of a circular section, the first cycle approximation of the Nusselt number is obtained as 3.7288 compared to the exact value of 3.6568. Representative temperature distribution curves are plotted and compared to those corresponding with constant wall heat flux conditions.


Sign in / Sign up

Export Citation Format

Share Document