Development and Evaluation of Prototype Transparent Electrodynamic Screen (EDS) Integrated Solar Collectors for Automated Dust Removal

Author(s):  
John N. Hudelson ◽  
Jeremy Stark ◽  
Hannah Gibson ◽  
Fang Hao ◽  
Zhongkai Xu ◽  
...  

The integration of transparent electro-dynamic screen (EDS) on the front surface of solar mirrors and glass cover plates of photovoltaic panels has a strong potential to significantly reduce the frequency of water-based cleaning needed to mitigate losses from dust depositions present in arid regions. The objective of our research was to develop and evaluate prototype transparent EDS-integrated mirrors and solar panels for their self-cleaning functions, with an aim to keep the collectors clean at a low cost without water or manual labor. This paper focuses on the design, fabrication, and laboratory evaluation of a prototype EDS integrated second surface mirrors and solar panels. The EDS consists of a set of parallel transparent electrodes screen-printed on the optical surface and embedded in a thin transparent dielectric film. By applying three-phase, low current, low frequency high voltage-pulses to the electrodes, electro-dynamic repulsion forces and a traveling wave are created for removing dust particles from the surface of the collectors. Design and construction of an environmental test chamber to simulate different atmospheric conditions of semi-arid and arid areas with respect to temperature, RH, and dust deposition conditions are briefly described. A non-contact specular reflectometer was designed, constructed and calibrated for measuring specular reflection efficiency of the mirrors. Laboratory evaluation of the performance of the EDS-integrated collectors was completed using humidity controlled environment test chamber where the prototype mirrors and panels were examined for their self-cleaning action. In each experiment, the solar collectors were loaded with dust until the specular reflectance of the test mirror or the short circuit current of the panel showed a significant decrease. The EDS was then operated for one minute and the relative output was recorded. The results show that the specular reflectivity of EDS mirrors and the short circuit current of the EDS panels can be restored by more than 90% of the values measured under the clean conditions.

MRS Advances ◽  
2016 ◽  
Vol 1 (15) ◽  
pp. 1003-1012 ◽  
Author(s):  
M. K. Mazumder ◽  
J. W. Stark ◽  
C. Heiling ◽  
M. Liu ◽  
A. Bernard ◽  
...  

ABSTRACTDevelopment of transparent electrodynamic screens (EDS) printed on ultrathin flexible glass film substrates for retrofitting on solar panels and solar mirrors to perform self cleaning function is reviewed. Large-scale solar plants are generally installed in semi-arid and desert areas where dust layers build up on solar collectors causes major energy-yield loss. Maintaining designed plant capacities requires more than 90% reflectivity for CSP mirrors and 90% transmission efficiency for PV modules; solar collectors must therefore be cleaned at a frequency depending on the rate of dust deposition. Scarcity of water in these regions requires a cleaning method that drastically reduces or eliminates water and the associated labor costs for high efficiency operation of large-scale solar plants. An EDS film consists of rows of interdigitated, transparent conducting parallel electrodes embedded within a flexible ultrathin glass film and an optically clear adhesive film used for retrofitting the film on the surface of solar collectors. When phased voltage pulses activate the electrodes, the dust particles are first electrostatically charged, then repelled and removed from the surface of the solar collectors by Coulomb force, restoring transmission efficiency greater than 90%. The electrodes of EDS are either made from silver nanowire or another conductive transparent material printed on a highly transparent, ultrathin (100-μm thick), flexible borosilicate glass film. Applications of different conducting transparent electrodes and methods of printing are reviewed for optimizing self-cleaning function of solar panels and mirrors.


Challenges ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 9 ◽  
Author(s):  
Aritra Ghosh

Worldwide photovoltaic power generation is affected by deposited dust on photovoltaic (PV) systems, which creates soiling losses. In this work, factors that have a detrimental influence on dust deposition and an impact on PV systems performance were reviewed. The different ways that dust deposition can be a barrier for India’s energy security plan involving PV were also discussed. Different available cleaning techniques were also introduced. The nature, size, and morphology of dust particles vary with geographical location. Any increase of the PV tilt angle, or high wind speed and heavy rain showers reduce dust deposition. Deposited dust reduces the incident transmitted light on the PV, which has an adverse impact on the reduction of short circuit current. However, the open-circuit voltage has a reduced effect due to dust deposition. The enhancement of temperature caused by dust-covered PVs is still a debatable area. A universal cleaning technique is required to eliminate the soiling losses from PV. India has a solar mission to generate 100 GW of PV power by 2022. However, India’s poor air quality can undermine efforts to achieve this target.


2017 ◽  
Vol 6 (3) ◽  
pp. 225
Author(s):  
Abhishek Kumar Tripathi ◽  
M. Aruna ◽  
Ch.S.N. Murthy

The performance of PV panel depends on the incoming sunlight on its surface. The accumulated airborne dust particles on panel surface creates a barrier in the path of sunlight and panel surface, which significantly reduces the amount of solar radiation falling on the panel surface. The present study shows a significant reduction in short circuit current and power output of PV panel due to dust deposition on its surface, whereas the reduction in open circuit voltage is not much prominent. This study has been carried in the field as well as in the laboratory. The reduction in maximum power output of PV panel for both the studies ensures a linear relation with the dust deposition on its surface. In the field study, the reduction in the power output due to 12.86gm of dust deposition on the panel surface was 43.18%, whereas in the laboratory study it was 44.75% due to 11gm of dust depositionArticle History: Received July 10th 2017; Received in revised form Sept 15th 2017x; Accepted 1st Oct 2017; Available onlineHow to Cite This Article: Tripathi, A.K., Aruna, M. and Murthy, Ch.,S.N. (2017). Performance Evaluation of PV Panel Under Dusty Condition. International Journal of Renewable Energy Develeopment, 6(3), 225-233.https://doi.org/10.14710/ijred.6.3.225-233 


Author(s):  
Jeremy Stark ◽  
Julius Yellowhair ◽  
John N. Hudelson ◽  
Mark Horenstein ◽  
Malay Mazumder

For large scale CSP power plants, vast areas of land are needed in deserts and semi-arid climates where uninterrupted solar irradiance is most abundant. These power facilities use large arrays of mirrors to reflect and concentrate sunlight onto collectors, however, dust deposition on the optical surfaces causes obscuration of sunlight, resulting in large energy-yield losses in solar plants. This problem is compounded by the lack of natural clean water resources for conventional cleaning of solar mirrors, often with reflective surface areas of large installations exceeding a million square meters. To investigate the application of transparent electrodynamic screens (EDS) for efficient and cost effective dust removal from solar mirrors, both optical modeling and experimental verifications were performed. Prototype EDS-integrated mirrors were constructed by depositing a set of parallel transparent electrodes into the sun-facing surface of solar mirrors and coating electrodes with thin transparent dielectric film. Activation of the electrodes with a three-phase voltage creates an electrodynamic field that charges and repels dust electrostatically by Coulomb force and sweeps away particles by a traveling electrodynamic wave. We report here brief discussions on (1) rate of deposition and the properties of dust with respect to their size distribution and chemical composition in semi-arid areas of the southwest US and Mojave Desert and their adhesion to solar mirrors, (2) optical models of: (a) specular reflection losses caused by scattering and absorption by dust particles deposited on the surface based on Mie scattering theory, and (b) reflection loss by the integration of EDS on the mirror surface, computed by FRED ray-tracing model. The objective is to maintain specular reflectivity of 90% or higher by frequent removal of dust by EDS. Our studies show that the incorporation of transparent EDS would cause an initial loss of 3% but would be able to maintain specular reflectivity more than 90% to meet the industrial requirement for CSP plants. Specular reflection measurements taken inside a climate controlled environmental chamber show that EDS integration can restore specular reflectivity and would be able to prevent major degradation of the optical surface caused by the deposition of dust.


2020 ◽  
Vol 18 (5) ◽  
pp. 419-426
Author(s):  
Parminder Kaur ◽  
Vikas Pandey ◽  
Balwinder Raj

The shortage of electricity is a major constraint to economic growth. Renewable energy such as solar energy has many advantages but also has many challenges to enhance its efficiency which is limited by the weather changes, dust particles, and material dependant properties. This affect various parameters like fill factor, short circuit current (jsc), open-circuit voltage (Voc) and module efficiency. This paper represents different materials used in solar cell structures and gives a realistic approach of factors affecting the performance of photovoltaic modules. The material used must produce cost-effective solar cells by reducing the amount of silicon material used in its production and enhance the power output. To enhance the performance of the PV cell, various methods and technologies are used. Effective use of solar power can be obtained using Internet of Things (IoT) technology which is used for solar tracking, monitoring, and forecasting.


2015 ◽  
Vol 1092-1093 ◽  
pp. 91-95
Author(s):  
Zhen Yong Liu ◽  
Jian Qi Sun ◽  
Zhi Chun Ma

Effects of solar panels must be taken into account by the light intensity of its output characteristics in practical application, especially solar panels placed outdoor. So the light intensity coefficient is an important parameter to be considered. In this paper,we took the light intensity characteristics of single crystal silicon solar cell as the research object. Also,through transforming the illumination intensity which are 777.60W/m2,996.97 W/m2 and 1224.88 W/m2, we would finish researching the characteristics of the cell sheet, which included battery plate volt ampere characteristic, open circuit voltage, short circuit current and maximum output power. Also, we’ve got the relationship of Uoc-T, Isc-T and Pm-T, respectively and Put forward the better intensity theory. It would lay a solid foundation of practice for the further study on how to improve the rate of light conversion.


2015 ◽  
Vol 1771 ◽  
pp. 67-72
Author(s):  
Gopal G. Pethuraja ◽  
Roger E. Welser ◽  
John W. Zeller ◽  
Yash R. Puri ◽  
Ashok K. Sood ◽  
...  

ABSTRACTThe impact of nanostructured broadband antireflection (AR) coatings on solar panel performance has been projected for a broad range of panel tilt angles at various locations. AR coated films have been integrated on test panels and the short-circuit current has been measured for the entire range of panel tilts. The integration of the AR coatings resulted in an increase in short-circuit current of the panels by eliminating front sheet reflection loss for a broad spectrum of light and wide angle of light incidence. The short-circuit current enhancement is 5% for normal light incidence and approximately 20% for off-angle light incidence. The National Renewable Energy Laboratory (NREL) System Advisor Model (SAM) predicts that this AR coating can yield at least 6.5% improvement in solar panel annual power output. The greatest enhancement, approximately 14%, is predicted for vertical panels. The AR coating’s contributions to vertical mount panels and building-integrated solar panels are significant. This nanostructured broadband AR coating thus has the potential to lower the cost per watt of photovoltaic solar energy.


2015 ◽  
Vol 1771 ◽  
pp. 145-150
Author(s):  
Gopal G. Pethuraja ◽  
Roger E. Welser ◽  
John W. Zeller ◽  
Yash R. Puri ◽  
Ashok K. Sood ◽  
...  

ABSTRACTFlexible copper indium gallium diselenide (CIGS) solar cells on lightweight substrates can deliver high specific powers. Flexible lightweight CIGS solar cells are also primary candidates for building-integrated panels. In all applications, CIGS cells can greatly benefit from the application of broadband and wide-angle AR coating technology. The AR coatings can significantly improve the transmittance of light over the entire CIGS absorption band spectrum. Increased short-circuit current has been observed after integrating AR coated films onto baseline solar panels. NREL’s System Advisor Model (SAM) has predicted up to 14% higher annual power output on AR integrated vertical or building-integrated panels. The combination of lightweight flexible substrates and advanced device designs employing nanostructured optical coatings together have the potential to achieve flexible CIGS modules with enhanced efficiencies and specific power.


Author(s):  
Malay Mazumder ◽  
Mark Horenstein ◽  
Jeremy Stark ◽  
Daniel Erickson ◽  
Arash Sayyah ◽  
...  

Concentrated Solar Power (CSP) systems used for photothermal conversion of solar energy to electricity are capable of meeting a large fraction of the global energy requirements. CSP plants are inherently robust with respect to the availability of materials, technology, and energy storage. However, dust depositions on solar collectors cause energy yield loss annually, ranging from 10 to 50% depending upon their location in the semi-arid and desert lands. Mitigation of energy loss requires manual cleaning of solar mirrors with water. A brief review of the soiling related losses in energy yield of the CSP plants is presented, which shows that cleaning of the CSP mirrors and receivers using water and detergent is an expensive and time-consuming process at best and is often impractical for large-scale installations where water is scarce. We report here our research effort in developing an electrodynamic dust removal technology that can be used for keeping the solar collectors clean continuously without requiring water and manual labor. Transparent electrodynamic screens (EDS), consisting of rows of transparent parallel electrodes embedded within a transparent dielectric film can be integrated on the front surface of the mirrors and on the receivers for dust removal for their application as self-cleaning solar collectors. When the electrodes are activated, over 90% of the deposited dust is removed. A summary of the current state of prototype development and evaluation of EDS integrated solar mirrors and experimental data on the removal of desert dust samples are presented. A brief analysis of cost-to-benefit ratio of EDS implementation for automated dust removal from large-scale solar collectors is included.


2011 ◽  
Vol 22 (3) ◽  
pp. 16-22 ◽  
Author(s):  
Eric Maluta ◽  
Vaithianathaswami Sankaran

The use of solar panels is becoming one of the options for some of the rural communities in Limpopo Province, South Africa, to get electrical energy for their radio and television sets as the national grid may not reach them in the near future. Hence, dissemination of knowledge of how to use the solar devices and their maintenance is crucial for these communities. This will be possible only if there is appropriate information available for the potential end-users, installers and extension workers. With this in mind, an attempt has been made to evaluate the performance of an amorphous and a crystalline solar panel at our experimental site. Outdoor tests were conducted to measure solar radiation, open-circuit voltage, short circuit current, current-voltage (I-V) curve, fill-factor and conversion efficiency and hence to compare the performance of the two types of panels. It was found that both types give a satisfactory performance for the climate of this region.


Sign in / Sign up

Export Citation Format

Share Document