scholarly journals Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power

Challenges ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 9 ◽  
Author(s):  
Aritra Ghosh

Worldwide photovoltaic power generation is affected by deposited dust on photovoltaic (PV) systems, which creates soiling losses. In this work, factors that have a detrimental influence on dust deposition and an impact on PV systems performance were reviewed. The different ways that dust deposition can be a barrier for India’s energy security plan involving PV were also discussed. Different available cleaning techniques were also introduced. The nature, size, and morphology of dust particles vary with geographical location. Any increase of the PV tilt angle, or high wind speed and heavy rain showers reduce dust deposition. Deposited dust reduces the incident transmitted light on the PV, which has an adverse impact on the reduction of short circuit current. However, the open-circuit voltage has a reduced effect due to dust deposition. The enhancement of temperature caused by dust-covered PVs is still a debatable area. A universal cleaning technique is required to eliminate the soiling losses from PV. India has a solar mission to generate 100 GW of PV power by 2022. However, India’s poor air quality can undermine efforts to achieve this target.

2017 ◽  
Vol 6 (3) ◽  
pp. 225
Author(s):  
Abhishek Kumar Tripathi ◽  
M. Aruna ◽  
Ch.S.N. Murthy

The performance of PV panel depends on the incoming sunlight on its surface. The accumulated airborne dust particles on panel surface creates a barrier in the path of sunlight and panel surface, which significantly reduces the amount of solar radiation falling on the panel surface. The present study shows a significant reduction in short circuit current and power output of PV panel due to dust deposition on its surface, whereas the reduction in open circuit voltage is not much prominent. This study has been carried in the field as well as in the laboratory. The reduction in maximum power output of PV panel for both the studies ensures a linear relation with the dust deposition on its surface. In the field study, the reduction in the power output due to 12.86gm of dust deposition on the panel surface was 43.18%, whereas in the laboratory study it was 44.75% due to 11gm of dust depositionArticle History: Received July 10th 2017; Received in revised form Sept 15th 2017x; Accepted 1st Oct 2017; Available onlineHow to Cite This Article: Tripathi, A.K., Aruna, M. and Murthy, Ch.,S.N. (2017). Performance Evaluation of PV Panel Under Dusty Condition. International Journal of Renewable Energy Develeopment, 6(3), 225-233.https://doi.org/10.14710/ijred.6.3.225-233 


2020 ◽  
Vol 18 (5) ◽  
pp. 419-426
Author(s):  
Parminder Kaur ◽  
Vikas Pandey ◽  
Balwinder Raj

The shortage of electricity is a major constraint to economic growth. Renewable energy such as solar energy has many advantages but also has many challenges to enhance its efficiency which is limited by the weather changes, dust particles, and material dependant properties. This affect various parameters like fill factor, short circuit current (jsc), open-circuit voltage (Voc) and module efficiency. This paper represents different materials used in solar cell structures and gives a realistic approach of factors affecting the performance of photovoltaic modules. The material used must produce cost-effective solar cells by reducing the amount of silicon material used in its production and enhance the power output. To enhance the performance of the PV cell, various methods and technologies are used. Effective use of solar power can be obtained using Internet of Things (IoT) technology which is used for solar tracking, monitoring, and forecasting.


2014 ◽  
Vol 556-562 ◽  
pp. 1894-1897
Author(s):  
Xin Wei Yuan ◽  
Jie Qin Shi

Optically powered system is a revolutionary new power delivery system, in which optical power is delivered over fiber to photovoltaic power converter, where optical power is transformed into electrical power. Therefore the system is inherently immune to RF, EMI, high voltage and lighting effects. Capable of powering electronic circuitry by optical fiber, this technology has been validated in industries such as electric power, communications, remote sensing and aerospace. To a large extent, photovoltaic power converter is a key component that decides the performance of optically powered system. In this paper, the commonly used GaAs photovoltaic power converter is studied and tested. Parameter values like open circuit voltage, short circuit current, maximum output power, conversion efficiency and the optimum load resistance are obtained through experiment, which can be severed as important reference while choosing or designing DC-DC converter.


Author(s):  
John N. Hudelson ◽  
Jeremy Stark ◽  
Hannah Gibson ◽  
Fang Hao ◽  
Zhongkai Xu ◽  
...  

The integration of transparent electro-dynamic screen (EDS) on the front surface of solar mirrors and glass cover plates of photovoltaic panels has a strong potential to significantly reduce the frequency of water-based cleaning needed to mitigate losses from dust depositions present in arid regions. The objective of our research was to develop and evaluate prototype transparent EDS-integrated mirrors and solar panels for their self-cleaning functions, with an aim to keep the collectors clean at a low cost without water or manual labor. This paper focuses on the design, fabrication, and laboratory evaluation of a prototype EDS integrated second surface mirrors and solar panels. The EDS consists of a set of parallel transparent electrodes screen-printed on the optical surface and embedded in a thin transparent dielectric film. By applying three-phase, low current, low frequency high voltage-pulses to the electrodes, electro-dynamic repulsion forces and a traveling wave are created for removing dust particles from the surface of the collectors. Design and construction of an environmental test chamber to simulate different atmospheric conditions of semi-arid and arid areas with respect to temperature, RH, and dust deposition conditions are briefly described. A non-contact specular reflectometer was designed, constructed and calibrated for measuring specular reflection efficiency of the mirrors. Laboratory evaluation of the performance of the EDS-integrated collectors was completed using humidity controlled environment test chamber where the prototype mirrors and panels were examined for their self-cleaning action. In each experiment, the solar collectors were loaded with dust until the specular reflectance of the test mirror or the short circuit current of the panel showed a significant decrease. The EDS was then operated for one minute and the relative output was recorded. The results show that the specular reflectivity of EDS mirrors and the short circuit current of the EDS panels can be restored by more than 90% of the values measured under the clean conditions.


The photovoltaic (PV) panel performances are dependent upon many factors. A study was executed to ascertain the effect of a V-Trough Concentrator (VTC) to be engaged on a PV Panel in this research where the performance of PV panels are compared at different surface temperatures both back and front. The experiment was conducted using two similar rated monocrystalline PV panels. One of the PV panels was installed with a VTC while the other is without the VTC that served as Control for benchmark purposes. The optimum VTC selected is a 60° VTC. Both PV systems were built with a lower supporting mechanism and were placed to operate under similar operating and weather situations, while the PV panel surface temperature both front surface and back surface, Open Circuit Voltage (Voc), as well as Short-Circuit Current (Isc) readings are being recorded down at specific time. The theoretical output is determined and compared. This paper ends with a presentation of the results obtained in a study on the PV panel surfaces temperature in relation to its performance by PV system using a 60o VTC.


2016 ◽  
Vol 819 ◽  
pp. 618-622
Author(s):  
Y. Baradey ◽  
Mohammad Nurul Alam Hawlader ◽  
M. Idres ◽  
S.I. Ihsan

Photovoltaic systems have become recently the most attractive and promising technology compared with other solar energy conversion devices. Solar energy reaches the earth’s surface in wavelengths between 0.300 and 2.50 μm. Silicon based photovoltaic systems convert only the wavelength between 0.35 to 0.82 μm of solar energy to electricity. The rest of incident solar radiation will be converted to heat, which will increase the operating temperature of the device and decrease the output power and efficiency. Maintaining the operating temperature of the PV systems at low and desired value was the main emphasis of different researches through the last decades. In this research, a special transparent glass cover (STGC) was used in order to cool down the photovoltaic module and, therefore, increase the output power and the efficiency of the module. The result showed that STGC led to 2.75% improvement in open circuit voltage, 9.6% increase in short circuit current, 26.4% increase in the output power, and 3% increase in the efficiency of the module.


Author(s):  
Adnan Hussein Ali ◽  
Hassan Salman Hamad ◽  
Ali Abdulwahhab Abdulrazzaq

<p>Photovoltaic (PV) systems are normally modeled by employing accurate equations dealing with a behavior the PV system. This model has Characteristic of PV array cells, which are influenced by both irradiation and temperature variations. Grid-connected PV system is considered as electricity generated solar cell system which is connected to the grid utilities. This paper characterizes an exhibiting and simulating of PV system that executed with MATLAB /Simulink. The impact of solar irradiances as well as ambient temperature performances of PV models is investigated and noted that a lower temperature provides maximum power higher so that the open circuit voltage is larger. Furthermore, if the temperature is low, then a considerably short circuit current is low too.</p>


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Ray-Hua Horng ◽  
Yu-Cheng Kao ◽  
Apoorva Sood ◽  
Po-Liang Liu ◽  
Wei-Cheng Wang ◽  
...  

In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction solar cell has mechanically stacked using a low-temperature bonding process which involves micro metal In balls on a metal line using a high-optical-transmission spin-coated glue material. Current–voltage measurements of the GaInP/GaAs/poly-Si triple-junction solar cells have carried out at room temperature both in the dark and under 1 sun with 100 mW/cm2 power density using a solar simulator. The GaInP/GaAs/poly-Si triple-junction solar cell has reached an efficiency of 24.5% with an open-circuit voltage of 2.68 V, a short-circuit current density of 12.39 mA/cm2, and a fill-factor of 73.8%. This study demonstrates a great potential for the low-temperature micro-metal-ball mechanical stacking technique to achieve high conversion efficiency for solar cells with three or more junctions.


Author(s):  
Mingqiang Zhong ◽  
Qin Feng ◽  
Changlai Yuan ◽  
Xiao Liu ◽  
Baohua Zhu ◽  
...  

AbstractIn this work, the (1−x)Bi0.5Na0.5TiO3-xBaNi0.5Nb0.5O3 (BNT-BNN; 0.00 ⩽ x ⩽ 0.20) ceramics were prepared via a high-temperature solid-state method. The crystalline structures, photovoltaic effect, and electrical properties of the ceramics were investigated. According to X-ray diffraction, the system shows a single perovskite structure. The samples show the normal ferroelectric loops. With the increase of BNN content, the remnant polarization (Pr) and coercive field (Ec) decrease gradually. The optical band gap of the samples narrows from 3.10 to 2.27 eV. The conductive species of grains and grain boundaries in the ceramics are ascribed to the double ionized oxygen vacancies. The open-circuit voltage (Voc) of ∼15.7 V and short-circuit current (Jsc) of ∼1450 nA/cm2 are obtained in the 0.95BNT-0.05BNN ceramic under 1 sun illumination (AM1.5G, 100 mW/cm2). A larger Voc of 23 V and a higher Jsc of 5500 nA/cm2 are achieved at the poling field of 60 kV/cm under the same light conditions. The study shows this system has great application prospects in the photovoltaic field.


Sign in / Sign up

Export Citation Format

Share Document