scholarly journals First On-Sun Tests of a Centrifugal Particle Receiver System

Author(s):  
Miriam Ebert ◽  
Lars Amsbeck ◽  
Reiner Buck ◽  
Jens Rheinländer ◽  
Bärbel Schlögl-Knothe ◽  
...  

One direct absorption receiver concept currently investigated at the DLR is the Centrifugal Particle Receiver (CentRec®). Successful tests and promising results of this receiver design have been achieved in a Proof-of-Concept scale with 7.5 kW thermal power and 900°C particle temperature in 2014. Based on these results the prototype has been scaled up to 2.5 MW thermal power for a future pilot plant. Lab tests have been carried out with infrared heaters. In a next step the prototype has been prepared to be tested on-sun in a test setup in the Juelich Solar Tower, Germany. The tests aim to demonstrate high temperature operation and to evaluate the performance of the system. The test setup consists of a centrifugal receiver integrated into the tower and a closed loop particle transport system. The transport system includes an air cooling system to cool down the particles at the receiver outlet, cold particle storage, belt bucket elevator, hopper and particle metering system. While the 2.5 MWth receiver prototype has been developed in a former project, the further infrastructure for the on-sun tests needed to be designed, manufactured and installed. The system is equipped with measurement instrumentation, data acquisition system and control software. Manufacturing of all main components has been completed. Installation of the test setup started in November 2016 and finished in June 2017. Cold and hot commissioning have been carried out from July 2017 until September 2017. On-sun tests started in September 2017. Receiver tests up to 775°C/1,430°F receiver outlet temperature and more than 900°C/1,650°F particle temperature in the receiver have already been achieved. Tests up to 900°C particle outlet temperature are planned at different load levels and will be conducted until summer 2018. This paper describes the test setup for a centrifugal particle receiver system, presenting design, installation and commissioning of the system. It presents test results of first on-sun tests and gives an outlook on further steps regarding solar tests planned for 2018.

Author(s):  
Felix Welsch ◽  
Susanne-Marie Kirsch ◽  
Nicolas Michaelis ◽  
Paul Motzki ◽  
Andreas Schütze ◽  
...  

Abstract Elastocaloric cooling uses solid-state NiTi-based shape memory alloy (SMA) as a non-volatile cooling medium and enables a novel environment-friendly cooling technology. Due to the high specific latent heats activated by mechanical loading/unloading, substantial temperature changes are generated in the material. Accompanied by a small required work input, a high coefficient of performance is achievable. Recently, a fully-functional and illustrative continuous operating elastocaloric air cooling system based on SMA was developed and realized. To assist the design process of an optimized device with given performance and efficiency requirements, a fully coupled thermo-mechanical system-level model of the multi-wire cooling unit was developed and implemented in MATLAB. The resulting compact simulation tool is qualified for massively parallel computation on modern multi-core computers, which allows fast and comprehensive parameter scans. The comparison of first measurements and simulation results showed differences in the system performance. As the airflow rate influences the thermal power and the outlet temperature significantly, the demonstrator is extended with a spatial airflow measurement system to analyze the crossflow between the hot and cold side. Following, the fluid transport model is advanced by the effect of cross-flow losses, and first modeling results with the variation of airflow rate and rotation frequency are presented.


Author(s):  
Jhon Pérez ◽  
Miguel Asuaje Tovar

Nowadays, under unstable prices scenarios, the oil and gas industry is looking for improvement in its production processes, either by increasing the production and/or lowering the operational costs. Aircoolers, particularly, are key equipments in the natural gas industry, and are frequently the bottleneck of gas conditioning processes. To improve air cooling efficiency and increase their gas volume capacity, several solutions are commonly implemented such as: fan blade angle change, air inlet section modification, fogging cooling system, among others. The present study shows the CFD (Computational Fluid Dynamics) analysis of an air cooler, under an air flow with an evaporative cooling system, in order to quantify the effect of this cooling process on its overall equipment performance. Simulations were carried out using sing the ANSYS CFX v-14® software, in a simplified multidomain which consider fluid and solid blocks: 1.- External two-phase flow (air + water droplets) with heat and mass transfer 2.- Heat transfer through the pipe wall 3.- Single phase natural gas flow inside the tubes In order to stablish an operational range of the fogging system, the influence of parameters like: inlet temperature and relative humidity of the air, water flow rate, water droplets mean diameter, water injection position, were studied [9, 10]. The results show a good agreement (around 5%) respect to the reported values on the literature. The best performance for the equipment was reported with a droplet diameter of 20 μm and for low relative humidity (less than 65%), which guarantees the complete evaporation of the droplets within the studied domain. For the analyzed operating conditions, a reduction of the gas outlet temperature of up to 1.5°C can be achieved.


Author(s):  
Joshua M. Christian ◽  
Clifford K. Ho

Solar Two was a demonstration of the viability of molten salt power towers. The power tower was designed to produce enough thermal power to run a 10-MWe conventional Rankine cycle turbine. A critical component of this process was the solar tower receiver. The receiver was designed for an applied average heat flux of 430 kW/m2 with an outlet temperature of 565°C (838.15 K). The mass flow rate could be varied in the system to control the outlet temperature of the heat transfer fluid, which was high temperature molten salt. The heat loss in the actual system was calculated by using the power-on method which compares how much power is absorbed by the molten salt when using half of the heliostat field and then the full heliostat field. However, the total heat loss in the system was lumped into a single value comprised of radiation, convection, and conduction heat transfer losses. In this study, ANSYS FLUENT was used to evaluate and characterize the radiative and convective heat losses from this receiver system assuming two boundary conditions: (1) a uniform heat flux on the receiver and (2) a distributed heat flux generated from the code DELSOL. The results show that the distributed-flux models resulted in radiative heat losses that were ∼14% higher than the uniform-flux models, and convective losses that were ∼5–10% higher due to the resulting non-uniform temperature distributions. Comparing the simulations to known convective heat loss correlations demonstrated that surface roughness should be accounted for in the simulations. This study provides a model which can be used for further receiver design and demonstrates whether current convective correlations are appropriate for analytical evaluation of external solar tower receivers.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 170
Author(s):  
Weiming Ni ◽  
Zhihua Ge ◽  
Lijun Yang ◽  
Xiaoze Du

To improve the adaptability of direct air-cooled power generating units to the variations of both meteorological condition and power load, a piping-main arrangement of air-cooled condensers was proposed. The heat and mass transfer models of the air-side were established for the air cooling system of 2 × 600 MW thermal power generating units. The coupled model for both flow resistance loss and condensate flow rate distributions of exhaust steam inside air-cooled condensers were developed based on the temperature fields through numerical simulation. Calculation results, including the condensate flow rate, back pressure, and coal consumption rate, were acquired under different ambient temperatures and wind velocities. The results show that the proposed piping-main arrangement can weaken the ambient wind impacts and reduce the backpressure significantly in summer by adjusting the number of air-cooled condenser cells in operation. The steam flow rate can be uniformed effectively by adjusting the number of operating air-cooled condenser cells during winter. It can also avoid the freezing accident in winter while cooling the exhaust steam of two turbines by part air-cooled condenser cells.


2015 ◽  
Vol 60 (3) ◽  
pp. 715-728
Author(s):  
Bernard Nowak ◽  
Rafał Łuczak

Abstract The article discusses the improvement of thermal working conditions in underground mine workings, using local refrigeration systems. It considers the efficiency of air cooling with direct action air compression refrigerator of the TS-300B type. As a result of a failure to meet the required operating conditions of the aforementioned air cooling system, frequently there are discrepancies between the predicted (and thus the expected) effects of its work and the reality. Therefore, to improve the operating efficiency of this system, in terms of effective use of the evaporator cooling capacity, quality criteria were developed, which are easy in practical application. They were obtained in the form of statistical models, describing the effect of independent variables, i.e. the parameters of the inlet air to the evaporator (temperature, humidity and volumetric flow rate), as well as the parameters of the water cooling the condenser (temperature and volumetric flow rate), on the thermal power of air cooler, treated as the dependent variable. Statistical equations describing the performance of the analyzed air cooling system were determined, based on the linear and nonlinear multiple regression. The obtained functions were modified by changing the values of the coefficients in the case of linear regression, and of the coefficients and exponents in the case of non-linear regression, with the independent variables. As a result, functions were obtained, which were more convenient in practical applications. Using classical statistics methods, the quality of fitting the regression function to the experimental data was evaluated. Also, the values of the evaporator thermal power of the refrigerator, which were obtained on the basis of the measured air parameters, were compared with the calculated ones, by using the obtained regression functions. These statistical models were built on the basis of the results of measurements in different operating conditions of the TS-300B refrigerator, both on the test stand in the manufacturer’s laboratory and in the workings of underground mines. The evaluation of the measurement data distributions, as well as an analysis of the basic descriptive statistics of the mentioned variables were carried out, determining their measures of central tendency, location, dispersion and asymmetry.


2019 ◽  
Vol 6 (3) ◽  
pp. 80-85
Author(s):  
Denis Igorevich Smagin ◽  
Konstantin Igorevich Starostin ◽  
Roman Sergeevich Savelyev ◽  
Anatoly Anatolyevich Satin ◽  
Anastasiya Romanovna Neveshkina ◽  
...  

One of the ways to achieve safety and comfort is to improve on-board air conditioning systems.The use of air cooling machine determines the air pressure high level at the point of selection from the aircraft engine compressor. Because of the aircraft operation in different modes and especially in the modes of small gas engines, deliberately high stages of selection have to be used for ensuring proper operation of the refrigeration machine in the modes of the aircraft small gas engines. Into force of this, most modes of aircraft operation have to throttle the pressure of the selected stage of selection, which, together with the low efficiency of the air cycle cooling system, makes the currently used air conditioning systems energy inefficient.A key feature of the architecture without air extraction from the main engines compressors is the use of electric drive compressors as a source of compressed air.A comparative analysis of competing variants of on-board air conditioning system without air extraction from engines for longrange aircraft projects was performed at the Moscow Aviation Institute (National Research University).The article deals with the main approaches to the decision-making process on the appearance of a promising aircraft on-board air conditioning system at the stage of its conceptual design and formulated the basic requirements for the structure of a complex criterion at different life cycle stages.The level of technical and technological risk, together with a larger installation weight, will require significant costs for development, testing, debugging and subsequent implementation, but at the same time on-board air conditioning system scheme without air extraction from the engines will achieve a significant increase in fuel efficiency at the level of the entire aircraft.


Sign in / Sign up

Export Citation Format

Share Document