CFD Analysis of Natural Gas Cooling System Through a Conventional Aircooler Improved by a Fogging System

Author(s):  
Jhon Pérez ◽  
Miguel Asuaje Tovar

Nowadays, under unstable prices scenarios, the oil and gas industry is looking for improvement in its production processes, either by increasing the production and/or lowering the operational costs. Aircoolers, particularly, are key equipments in the natural gas industry, and are frequently the bottleneck of gas conditioning processes. To improve air cooling efficiency and increase their gas volume capacity, several solutions are commonly implemented such as: fan blade angle change, air inlet section modification, fogging cooling system, among others. The present study shows the CFD (Computational Fluid Dynamics) analysis of an air cooler, under an air flow with an evaporative cooling system, in order to quantify the effect of this cooling process on its overall equipment performance. Simulations were carried out using sing the ANSYS CFX v-14® software, in a simplified multidomain which consider fluid and solid blocks: 1.- External two-phase flow (air + water droplets) with heat and mass transfer 2.- Heat transfer through the pipe wall 3.- Single phase natural gas flow inside the tubes In order to stablish an operational range of the fogging system, the influence of parameters like: inlet temperature and relative humidity of the air, water flow rate, water droplets mean diameter, water injection position, were studied [9, 10]. The results show a good agreement (around 5%) respect to the reported values on the literature. The best performance for the equipment was reported with a droplet diameter of 20 μm and for low relative humidity (less than 65%), which guarantees the complete evaporation of the droplets within the studied domain. For the analyzed operating conditions, a reduction of the gas outlet temperature of up to 1.5°C can be achieved.

Author(s):  
Nicola Palestra ◽  
Giovanna Barigozzi ◽  
Antonio Perdichizzi

The paper presents the results of an investigation on inlet air cooling systems based on cool thermal storage, applied to combined cycle power plants. Such systems provide a significant increase of electric energy production in the peak hours; the charge of the cool thermal storage is performed instead during the night time. The inlet air cooling system also allows the plant to reduce power output dependence on ambient conditions. A 127MW combined cycle power plant operating in the Italian scenario is the object of this investigation. Two different technologies for cool thermal storage have been considered: ice harvester and stratified chilled water. To evaluate the performance of the combined cycle under different operating conditions, inlet cooling systems have been simulated with an in-house developed computational code. An economical analysis has been then performed. Different plant location sites have been considered, with the purpose to weigh up the influence of climatic conditions. Finally, a parametric analysis has been carried out in order to investigate how a variation of the thermal storage size affects the combined cycle performances and the investment profitability. It was found that both cool thermal storage technologies considered perform similarly in terms of gross extra production of energy. Despite this, the ice harvester shows higher parasitic load due to chillers consumptions. Warmer climates of the plant site resulted in a greater increase in the amount of operational hours than power output augmentation; investment profitability is different as well. Results of parametric analysis showed how important the size of inlet cooling storage may be for economical results.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Richard Eiland ◽  
John Edward Fernandes ◽  
Marianna Vallejo ◽  
Ashwin Siddarth ◽  
Dereje Agonafer ◽  
...  

Complete immersion of servers in dielectric mineral oil has recently become a promising technique for minimizing cooling energy consumption in data centers. However, a lack of sufficient published data and long-term documentation of oil immersion cooling performance make most data center operators hesitant to apply these approaches to their mission critical facilities. In this study, a single server was fully submerged horizontally in mineral oil. Experiments were conducted to observe the effects of varying the volumetric flow rate and oil inlet temperature on thermal performance and power consumption of the server. Specifically, temperature measurements of the central processing units (CPUs), motherboard (MB) components, and bulk fluid were recorded at steady-state conditions. These results provide an initial bounding envelope of environmental conditions suitable for an oil immersion data center. Comparing with results from baseline tests performed with traditional air cooling, the technology shows a 34.4% reduction in the thermal resistance of the system. Overall, the cooling loop was able to achieve partial power usage effectiveness (pPUECooling) values as low as 1.03. This server level study provides a preview of possible facility energy savings by utilizing high temperature, low flow rate oil for cooling. A discussion on additional opportunities for optimization of information technology (IT) hardware and implementation of oil cooling is also included.


Author(s):  
Azzam S. Salman ◽  
Jamil A. Khan

Experiments were conducted in a closed loop spray cooling system working with deionized water as a working fluid. This study was performed to investigate the effect of the spraying parameters, such as Sauter mean diameter (SMD), the droplet velocity, and the residual velocity on the spray cooling heat transfer in the non-boiling region. Thermal effects on plain and modified surfaces with circular grooves were examined under different operating conditions. The inlet pressure of the working fluid was varied from 78.6 kPa to 183.515kPa, and the inlet temperature was kept between 21–22 °C. The distance between the nozzle and the target surface 10 mm. The results showed that increasing the coolant inlet pressure increases the droplet velocity and the number of droplets produced while decreasing the droplet size. As a consequence of these changes, increasing inlet pressure improved the heat transfer characteristics of both surfaces.


Author(s):  
K. K. Botros ◽  
H. Golshan ◽  
D. Rogers ◽  
B. Sloof

Gas turbine (GT) engines employed in natural gas compressor stations operate in different modes depending on the power, turbine inlet temperature and shaft speeds. These modes apply different sequencing of bleed valve opening on the air compressor side of the engine. Improper selection of the GT and the driven centrifugal gas compressor operating conditions can lead to larger bleed losses due to wider bleed valve openings. The bleed loss inevitably manifests itself in the form of higher overall heat rate of the GT and greater engine emission. It is therefore imperative to determine and understand the engine and process conditions that drive the GT to operate in these different modes. The ultimate objective is to operate the engine away from the inefficient modes by adjusting the driven gas compressor parameters as well as the overall station operating conditions (i.e. load sharing, control set points, etc.). This paper describes a methodology to couple the operating conditions of the gas compressor to the modes of GT bleed valve opening (and the subsequent air bleed rates) leading to identification of the operating parameters for optimal performance (i.e., best overall efficiency and minimum CO2e emission). A predictive tool is developed to quantify the overall efficiency loss as a result of the different bleed opening modes, and map out the condition on the gas compressor characteristics. One year’s worth of operating data taken from two different compressor stations on TransCanada Pipelines’ Alberta system were used to demonstrate the methodology. The first station employs GE-LM1600 gas turbine driving a Cooper Rolls-RFBB-30 centrifugal compressor. The second station employs GE-LM-2500+ gas turbine driving NP PCL-800/N compressor. The analysis conclusively indicates that there are operating regions on the gas compressor maps where losses due to bleed valves are reduced and hence CO2 emissions are lowered, which presents an opportunity for operation optimization.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2844 ◽  
Author(s):  
Panagiota Garbis ◽  
Andreas Jess

Polymer electrolyte membrane fuel cells (PEMFCs) are often used for household applications, utilizing hydrogen produced from natural gas from the gas grid. The hydrogen is thereby produced by steam reforming of natural gas followed by a water gas shift (WGS) unit. The H2-rich gas contains besides CO2 small amounts of CO, which deactivates the catalyst used in the PEMFCs. Preferential oxidation has so far been a reliable process to reduce this concentration but valuable H2 is also partly converted. Selective CO methanation considered as an attractive alternative. However, CO2 methanation consuming the valuable H2 has to be minimized. The modelling of selective CO methanation in a household fuel cell system is presented. The simulation was conducted for single and two-stage adiabatic fixed bed reactors (in the latter case with intermediate cooling), and the best operating conditions to achieve the required residual CO content (100 ppm) were calculated. This was done by varying the gas inlet temperature as well as the mass of the catalyst. The feed gas represented a reformate gas downstream of a typical WGS reaction unit (0.5%–1% CO, 10%–25% CO2, and 5%–20% H2O (rest H2)).


2017 ◽  
Vol 374 ◽  
pp. 131-147
Author(s):  
Gambo Kofar Bai Dayyabu ◽  
Hai Zhang ◽  
Qun Zheng ◽  
Salman Abdu

Wet compression process has been widely accepted as a measure of increasing the performance of industrial gas turbine, in the present work, in-depth analysis on the principle aspects of wet compression, more specifically, the influence of injected water droplets diameter, surface temperature, and their effects on the behavior of axial flow transonic compressor and gas turbine performance were analyzed using computational fluid dynamic. Injected water droplets and gas flow phase change was most intense in the area adjacent to shockwaves and were the slip velocity of the droplet is highest. Water injection in to the compressor rotor is a little perturbation to the flow field due to the formation of flow separation, evaporation rate, increasing weber number, reduction in the inlet temperature, and velocity vortex pattern relatively different from that of the dry case. The effects of water droplets on the rotor region at injection rate of 1%, shows decrease in the inlet temperature of 11%, outlet temperature 5% and uplift the efficiency to 1.5%.


Author(s):  
Richard R. Trewin

An evaporative cooling system for lowering the inlet temperature of a gas-turbine compressor is described. This system uses the latent enthalpy of evaporation for injected water droplets to decrease the enthalpy of the air. The requirements for compatible operation between this system and the compressor are given.


2020 ◽  
Vol 197 ◽  
pp. 06003
Author(s):  
Maria Faruoli ◽  
Annarita Viggiano ◽  
Paolo Caso ◽  
Vinicio Magi

It is well known that spark ignition internal combustion engines for aeronautical applications operate within a specific temperature range to avoid structural damages, detonations and loss of efficiency of the combustion process. An accurate assessment of the cooling system performance is a crucial aspect in order to guarantee broad operating conditions of the engine. In this framework, the use of a Conjugate Heat Transfer method is a proper choice, since it allows to estimate both the heat fluxes between the engine walls and the cooling air and the temperature distribution along the outer wall surfaces of the engine, and to perform parametric analyses by varying the engine operating conditions. In this work, the air-cooling system of a 4-cylinder spark ignition engine, designed by CMD Engine Company for aeronautical applications, is analysed in order to evaluate the amount of the air mass flow rate to guarantee the heat transfer under full load operating conditions. A preliminary validation of the model is performed by comparing the results with available experimental data. A parametric study is also performed to assess the influence of the controlling parameters on the cooling system efficiency. This study is carried out by varying the inlet air mass flow rate from 1.0 kg/s to 1.5 kg/s and the temperature of the inner wall surfaces of the engine combustion chambers from 390 K to 430 K.


Author(s):  
Nicola Aldi ◽  
Nicola Casari ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Pier Ruggero Spina ◽  
...  

Abstract Energy and climate change policies associated with the continuous increase in natural gas costs pushed governments to invest in renewable energy and alternative fuels. In this perspective, the idea to convert gas turbines from natural gas to syngas from biomass gasification could be a suitable choice. Biogas is a valid alternative to natural gas because of its low costs, high availability and low environmental impact. Syngas is produced with the gasification of plant and animal wastes and then burnt in gas turbine combustor. Although synfuels are cleaned and filtered before entering the turbine combustor, impurities are not completely removed. Therefore, the high temperature reached in the turbine nozzle can lead to the deposition of contaminants onto internal surfaces. This phenomenon leads to the degradation of the hot parts of the gas turbine and consequently to the loss of performance. The amount of the deposited particles depends on mass flow rate, composition and ash content of the fuel and on turbine inlet temperature (TIT). Furthermore, compressor fouling plays a major role in the degradation of the gas turbine. In fact, particles that pass through the inlet filters, enter the compressor and could deposit on the airfoil. In this paper, the comparison between five (5) heavy-duty gas turbines is presented. The five machines cover an electrical power range from 1 MW to 10 MW. Every model has been simulated in six different climate zones and with four different synfuels. The combination of turbine fouling, compressor fouling, and environmental conditions is presented to show how these parameters can affect the performance and degradation of the machines. The results related to environmental influence are shown quantitatively, while those connected to turbine and compressor fouling are reported in a more qualitative manner. Particular attention is given also to part-load conditions. The power units are simulated in two different operating conditions: 100 % and 80 % of power rate. The influence of this variation on the intensity of fouling is also reported.


2019 ◽  
Vol 35 (1) ◽  
pp. 150-156
Author(s):  
Jayanudin Jayanudin ◽  
Teguh Kurniawan ◽  
Indar Kustiningsih

The effect of spray dryer inlet temperature on characterization and total phenolic content of palm sugar has been studied. The spray dryer operating conditions used were 160 ̶ 220°C inlet temperature with a feed flow rate of 2 L/hour, while for outlet temperature was 85°C. The high inlet temperature produced a higher crystallinity of sucrose and did not agglomerate and not sticky. However, the high temperature of the spray dryer inlet produced palm sugar that was browner than the low temperature one. The effect of increasing temperature of spray dryer produced irregular total phenolic. The total phenolic at 220°C was higher than 200°C. Likewise, the temperature of 180°C generated total phenolic was higher than the temperature of 160°C. The total phenolic of palm sugar analyzed in this study was quite large within the range of 49 ± 0.01 to 63.6 ± 0.01 mg of GAE/100 g samples.


Sign in / Sign up

Export Citation Format

Share Document