Demonstrating SolarPILOT’s Python API Through Heliostat Optimal Aimpoint Strategy Use Case

Author(s):  
William T. Hamilton ◽  
Michael J. Wagner ◽  
Alexander J. Zolan

Abstract SolarPILOT is a software package that generates solar field layouts and characterizes the optical performance of concentrating solar power (CSP) tower systems. SolarPILOT was developed by the National Renewable Energy Laboratory (NREL) as a stand-alone desktop application but has also been incorporated into NREL’s1 System Advisor Model (SAM) in a simplified format. Prior means for user interaction with SolarPILOT have included the application’s graphical interface, the SAM routines with limited configurability, and through a built-in scripting language called “LK.” This paper presents a new, full-featured, Python-based application programmable interface (API) for SolarPILOT, which we hereafter refer to as CoPylot. CoPylot provides access to all SolarPILOT’s capabilities to generate and characterize power tower CSP systems seamlessly through Python. Supported capabilities include (i) creating and destroying a model instance with message reporting tools; (ii) accessing and setting any SolarPILOT variable including custom land boundaries for field layouts; (iii) programmatically managing receiver and heliostat objects with varied attributes for systems with multiple receiver or heliostat types; (iv) generating, assigning, and modifying solar field layouts including the ability to set individual heliostat locations, aimpoints, soiling rates, and reflectivity levels; (v) simulating solar field performance; (vi) returning detailed results describing performance of individual heliostats, the aggregate field, and receiver flux distribution; and, (vii) exporting Python-based model instances to multiple file formats. CoPylot enables Python users to perform detailed CSP tower analysis utilizing either the Hermite expansion technique (analytical) or the SolTrace ray-tracing engine. In addition to CoPylot’s functionality, Python users have access to the over 100,000 open-source libraries to develop, analyze, optimize, and visualize power tower CSP research. This enables CSP researchers to perform analysis that was previously not possible through SolarPILOT’s existing interfaces. This paper discusses the capabilities of CoPylot and presents a use case wherein we demonstrate optimal solar field aiming strategies.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Mohamed A. El-Beltagy ◽  
Noha A. Al-Mulla

In the current work, the Wiener-Hermite expansion (WHE) is used to solve the stochastic heat equation with nonlinear losses. WHE is used to deduce the equivalent deterministic system up to third order accuracy. The solution of the equivalent deterministic system is obtained using different techniques numerically and analytically. The finite-volume method (FVM) with Pickard iteration is used to solve the equivalent system iteratively. The WHE with perturbation technique (WHEP) is applied to deduce more simple and decoupled equivalent deterministic system that can be solved numerically without iterations. The system resulting from WHEP technique is solved also analytically using the eigenfunction expansion technique. The Monte-Carlo simulations (MCS) are performed to get the statistical properties of the stochastic solution and to verify other solution techniques. The results show that higher-order solutions are essential especially in case of nonlinearities where non-Gaussian effects cannot be neglected. The comparisons show the efficiency of the numerical WHE and WHEP techniques in solving stochastic nonlinear PDEs compared with the analytical solution and MCS.


2016 ◽  
Author(s):  
Brent S. Pedersen ◽  
Ryan M. Layer ◽  
Aaron R. Quinlan

ABSTRACTBackgroundThe integration of genome annotations and reference databases is critical to the identification of genetic variants that may be of interest in studies of disease or other traits. However, comprehensive variant annotation with diverse file formats is difficult with existing methods.ResultsWe have developed vcfanno as a flexible toolset that simplifies the annotation of genetic variants in VCF format. Vcfanno can extract and summarize multiple attributes from one or more annotation files and append the resulting annotations to the INFO field of the original VCF file. Vcfanno also integrates the lua scripting language so that users can easily develop custom annotations and metrics. By leveraging a new parallel “chromosome sweeping” algorithm, it enables rapid annotation of both whole-exome and whole-genome datasets. We demonstrate this performance by annotating over 85.3 million variants in less than 17 minutes (>85,000 variants per second) with 50 attributes from 17 commonly used genome annotation resources.ConclusionsVcfanno is a flexible software package that provides researchers with the ability to annotate genetic variation with a wide range of datasets and reference databases in diverse genomic formats.AvailabilityThe vcfanno source code is available at https://github.com/brentp/vcfanno under the MIT license, and platform-specific binaries are available at https://github.com/brentp/vcfanno/releases. Detailed documentation is available at http://brentp.github.io/vcfanno/, and the code underlying the analyses presented can be found at https://github.com/brentp/vcfanno/tree/master/scripts/paper.


2013 ◽  
Vol 13 (2) ◽  
pp. 63-74
Author(s):  
Ivaylo Atanasov

Abstract The paper studies issues concerning the deployment of third party control on user interactions by Web Services. A mapping of Web Service interfaces onto control protocols in multimedia networks is described. Models of user interaction session are proposed. It is proved that both models expose equivalent behaviour. A use-case example is provided.


2014 ◽  
Vol 513-517 ◽  
pp. 2004-2007 ◽  
Author(s):  
Peng Wang ◽  
Li Yuan Dong

In this paper we use the SVG technology to the field of Web GIS and set up the Traffic Accident Scene Management System (TASMS). Using text format characteristics of SVG, combined with ASP.NET technology and the scripting language JavaScript, we achieved dynamically load geographic information image, quick query and some user interaction functions.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Ali Elmaihy ◽  
Ahmed El Weteedy

Extensive solar field performance testing is often required as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guarantees between the involved parties. In this study, short duration (15 min) steady state performance acceptance test for Kuraymat integrated solar combined cycle (ISCC) solar field was carried out in agreement with the general guidelines of the earlier National Renewable Energy Laboratory (NREL) report on parabolic trough (PT) collector fields (Kearney, 2011, “Utility-Scale Parabolic Trough Solar Systems—Performance Acceptance Test Guidelines,” National Renewable Energy Laboratory, Golden, CO, NREL Report No. SR-5500-48895 and Kearney, 2010, “Development of Performance Acceptance Test Guidelines for Large Commercial Parabolic Trough Solar Fields,” National Renewable Energy Laboratory, Golden, CO, NREL Report No. SR-5500-49367) which is in full agreement with the plant documentations provided by FLAGSOL (2010, “Specification: Performance Test Procedure. Plant Documentations,” Customer Doc-ID: KU1-FLG-000-QP-M-001). This work includes measurement of the thermal power output of PT system under clear sky conditions over a short period during which thermal steady state conditions exist. The methodology of the solar field testing is presented while a special consideration is provided for the model formulation and uncertainty associated with the measured data. The measured results together with the associated uncertainties were compared with model predictions. All tests for both northern and a southern collector subfields that satisfy the test conditions are accepted based on acceptance test evaluation criteria.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Erminia Leonardi ◽  
Lorenzo Pisani

The design of a solar field is one of the crucial aspects when a solar tower system is realized. In general, shading and blocking effects, which are the main causes of solar power losses, are minimized displacing the heliostats each other quite distant, with typical land coverage less than 20%, and thus, strongly limiting the construction of these plants to low value lands. A new method is proposed here to improve the collected energy for solar tower systems with high land coverage (greater than 30%), based on the chance for each heliostat to rotate about the normal passing through the center of its surface. Then, shading and blocking are minimized by optimization of the relative orientations. To this aim, a small solar field composed of 150 rectangular flat heliostats has been considered, and its performances with and without the proposed optimization have been computed and compared for a wide variety of cases. In particular, a systematic analysis is presented to study the effect of the shape of the heliostats on the solar field performance: in a series of simulations, maintaining constant the area of each heliostat, the ratio between its two sides has been varied in a range between 1 (squared heliostats) and 3 (very stretched heliostats), and optimized and nonoptimized systems have been compared. Also, the total energy collected by the solar field has been calculated for optimized and nonoptimized heliostats' orientations, considering towers of different heights. Finally, the real PS10 solar plant has been considered, demonstrating that also for an optimized, very low coverage plant (about 14%), heliostats rotation can still improve the energy collection efficiency by a non-negligible amount.


2021 ◽  
Vol 323 ◽  
pp. 00011
Author(s):  
Mokhtar Ghodbane ◽  
Marek Majdak ◽  
Boussad Boumeddane

Solar energy is one of the most important sources of renewable energies, which is widely used in many fields, such as electricity production through direct production of superheated steam based on Linear Fresnel Reflector. This study aims to show the optical and thermal behavior of linear Fresnel solar reflectors field directed to the electricity production in El-Oued region at Algeria. Four days of different weather data have been selected to track the change in solar field performance. Numerical optical modeling has shown that the optical performance of the solar field has reached 53.60 %, while the thermal study based on the numerical solution of the energy balance equations of the receiver tube proved that the thermal efficiency was 37.3 % and the average thermal loss coefficient was limited between 5.72 and 5.98 W/m²K. As for the superheated steam temperature, the lowest value was recorded in December with a value of 501 K. The results obtained are very compelling and encouraging to invest in this low-cost technology.


2020 ◽  
Author(s):  
Antoine Grosjean ◽  
Estelle Le Baron ◽  
Anne-Claire Pescheux ◽  
Angela Disdier

Sign in / Sign up

Export Citation Format

Share Document