Modeling of Composite Material Behavior for Blast and Ballistic Impact

Author(s):  
C. F. Yen

A robust computational constitutive model has been developed to characterize the progressive failure behavior of composite laminates under blast and ballistic impact conditions. In this study, the capacity of the progressive failure model integrated within LS-DYNA has been evaluated by performing simulations of blast and ballistic impact composite panels. Correlation results indicated that the current composite model can be used to quantify the composite ballistic impact and blast damage behavior with reasonable accuracy. The present composite material model can provide insight into the damage development and progression that occurs during the ballistic impact or blast loading of lightweight composite armor. The availability of this design tool will greatly facilitate the development of composite structures with enhanced ballistic survivability.


Author(s):  
Chian-Fong Yen ◽  
Robert Kaste ◽  
Jian Yu ◽  
Charles Chih-Tsai Chen ◽  
Nelson Carey

Design of the new generation of aircraft is driven by the vastly increased cost of fuel and the resultant imperative for greater fuel efficiency. Carbon fiber composites have been used in aircraft structures to lower weight due to their superior stiffness and strength-to-weight properties. However, carbon composite material behavior under dynamic ballistic and blast loading conditions is relatively unknown. For aviation safety consideration, a computational constitutive model has been used to characterize the progressive failure behavior of carbon laminated composite plates subjected to ballistic impact conditions. Using a meso-mechanics approach, a laminated composite is represented by a collection of selected numbers of representative unidirectional layers with proper layup configurations. The damage progression in a unidirectional layer is assumed to be governed by the strain-rate dependent layer progressive failure model using the continuum damage mechanics approach. The composite failure model has been successfully implemented within LS-DYNA as a user-defined material subroutine. In this paper, the ballistic limit velocity (V50) was established for a series of laminates by ballistic impact testing. Correlation of the predicted and measured V50 values has been conducted to validate the accuracy of the ballistic modeling approach for the selected carbon composite material. The availability of this modeling tool will greatly facilitate the development of carbon composite structures with enhanced ballistic and blast survivability.



2019 ◽  
Vol 54 (4) ◽  
pp. 485-499
Author(s):  
Chian-Fong Yen ◽  
Bob Kaste ◽  
Charles Chih-Tsai Chen ◽  
Nelson Carey

The design of the next generation of aeronautical vehicles is driven by the vastly increased cost of fuel and the resultant imperative for greater fuel efficiency. Carbon fiber composites have been used in aeronautical structures to lower weight due to their superior stiffness and strength-to-weight properties. However, carbon composite material behavior under dynamic ballistic impact and blast loading conditions is relatively unknown. For aviation safety consideration, a computational constitutive model has been used to characterize the progressive failure behavior of carbon laminated composite plates subjected to ballistic impact and blast loading conditions. Using a meso-mechanics approach, a laminated composite is represented by a collection of selected numbers of representative unidirectional layers with proper layup configurations. The damage progression in a unidirectional layer is assumed to be governed by the strain-rate-dependent layer progressive failure model using the continuum damage mechanics approach. The composite failure model has been successfully implemented within LS-DYNA® as a user-defined material subroutine. In this paper, the ballistic limit velocity (V50) was first established for a series of laminates by ballistic impact testing. Correlation of the predicted and measured V50 values has been conducted to validate the accuracy of the ballistic modeling approach for the selected carbon composite material. A series of close-in shock hole blast tests on carbon composite panels were then tested and simulated using the LS-DYNA® Arbitrary-Lagrangian-Eulerian (ALE) method integrated with the Army Research Laboratory (ARL) progressive failure composite model. The computational constitutive model has been validated to characterize the progressive failure behavior in carbon laminates subjected to close-in blast loading conditions with reasonable accuracy. The availability of this modeling tool will greatly facilitate the development of carbon composite structures with enhanced ballistic impact and blast survivability.



2011 ◽  
Vol 279 ◽  
pp. 181-185 ◽  
Author(s):  
Guo Hua Zhao ◽  
Qing Lian Shu ◽  
Bo Sheng Huang

This paper proposes a material model of AS4/PEEK, a typical thermoplastic composite material, for the general purpose finite element code—ANSYS, which can be used to predict the mechanical behavior of AS4/PEEK composite structures. The computational result using this model has a good agreement with the test result. This investigation can lay the foundation for the numerical simulation of thermoplastic composite structures.



Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2422
Author(s):  
Zhi Hua Ning ◽  
Guan Liang Huo ◽  
Ren Huai Liu ◽  
Wei Lin Wu ◽  
Jia Ming Xie

Out-of-plane wrinkling has a significant influence on the mechanical performance of composite laminates. Numerical simulations were conducted to investigate the progressive failure behavior of fiber-reinforced composite laminates with out-of-plane wrinkle defects subjected to axial compression. To describe the material degradation, a three-dimensional elastoplastic damage model with four damage modes (i.e., fiber tensile failure, matrix failure, fiber kinking/splitting, and delamination) was developed based on the LaRC05 criterion. To improve the computational efficiency in searching for the fracture angle in the matrix failure analysis, a high-efficiency and robust modified algorithm that combines the golden section search method with an inverse interpolation based on an existing study is proposed. The elastoplastic damage model was implemented in the finite-element code Abaqus using a user-defined material subroutine in Abaqus/Explicit. The model was applied to the progressive failure analysis of IM7/8552 composite laminates with out-of-plane wrinkles subjected to axial compressive loading. The numerical results showed that the compressive strength prediction obtained by the elastoplastic damage model is more accurate than that derived with an elastic damage model. The present model can describe the nonlinearity of the laminate during the damage evolution and determine the correct damage locations, which are in good agreement with experimental observations. Furthermore, it was discovered that the plasticity effects should not be neglected in laminates with low wrinkle levels.



2012 ◽  
Vol 476-478 ◽  
pp. 583-586
Author(s):  
Yin Huan Yang

Failure prediction of laminated composites is performed by progressive failure analysis method. A modified form of Hashin’s failure criterion by Shokrieh is used to detect the failure, where a sudden degradation model is proposed to reduce engineering material constants. The numerical analysis of composite laminates is implemented in ANSYS Parametric Design Language (APDL) with commercial finite element codes ANSYS. The method can predict the initiation and propagation of local damage and response of laminated composite structures from initial loading and ultimate failure. The model has been validated by comparing numerical results with existing experimental results. And then failure analysis specimen fabricated from M40J/Ag80 and investigation on influence of stacking sequences and fiber orientations under in-plane compressive loading have been performed by the proposed model.



2022 ◽  
pp. 1-24
Author(s):  
G. Corrado ◽  
A. Arteiro ◽  
A.T. Marques ◽  
J. Reinoso ◽  
F. Daoud ◽  
...  

Abstract This paper presents the extension and validation of omni-failure envelopes for first-ply failure (FPF) and last-ply failure (LPF) analysis of advanced composite materials under general three-dimensional (3D) stress states. Phenomenological failure criteria based on invariant structural tensors are implemented to address failure events in multidirectional laminates using the “omni strain failure envelope” concept. This concept enables the generation of safe predictions of FPF and LPF of composite laminates, providing reliable and fast laminate failure indications that can be particularly useful as a design tool for conceptual and preliminary design of composite structures. The proposed extended omni strain failure envelopes allow not only identification of the controlling plies for FPF and LPF, but also of the controlling failure modes. FPF/LPF surfaces for general 3D stress states can be obtained using only the material properties extracted from the unidirectional (UD) material, and can predict membrane FPF or LPF of any laminate independently of lay-up, while considering the effect of out-of-plane stresses. The predictions of the LPF envelopes and surfaces are compared with experimental data on multidirectional laminates from the first and second World-Wide Failure Exercise (WWFE), showing a satisfactory agreement and validating the conservative character of omni-failure envelopes also in the presence of high levels of triaxiality.



Aerospace ◽  
2004 ◽  
Author(s):  
Satoru Takano ◽  
Tomo Takeda ◽  
Yasuhide Shindo ◽  
Fumio Narita

This paper focuses on understanding the deformation and progressive failure behavior of glass/epoxy plain weave fabric-reinforced laminates subjected to uniaxial tension load at cryogenic temperatures. Cryogenic tensile tests were conducted on the woven-fabric laminates, and the damage development during loading was characterized by AE (acoustic emission) measurements. A finite element methodology for progressive failure analysis of woven-fabric composite panels was also developed, and applied to simulate “knee” behavior in the stress-strain responses and damage behavior in the tensile test specimens. The effect of strain concentrations due to the fabric architecture on the failure strain of the material was considered by incorporating the SVF (strain variation factor) from meso-scale analysis of a woven-fabric composite unit into the macro-scale analysis of the specimens. A comparison was made between the finite element predictions and the experimental data, and the agreement is good.



2017 ◽  
Vol 31 (12) ◽  
pp. 1634-1660 ◽  
Author(s):  
Sandeep Medikonda ◽  
Ala Tabiei

A micro-mechanical composite material model is developed to simulate the behavior of unidirectional composites under impact loading conditions in the nonlinear finite element solver (LS-DYNA®). The nonlinear strain rate and pressure dependency in the composite material model is accounted by the resin, which uses previously developed state variable viscoplastic equations. These equations have been originally developed for metals; however, these are modified to account for the significant contributions of hydrostatic stresses typically observed in polymers. The material model also uses a continuum damage mechanics (CDM) based failure model to incorporate the progressive post-failure behavior. A set of Weibull distribution functions are used to quantify this behavior, and a methodology of assigning physical significance to the choice of damage/softening parameters used in these functions is presented. The impact response of composite laminate plates has been simulated and compared to the experiments. It has been observed that the predicted results compare favorably to the experiments.



2013 ◽  
Vol 117 (1187) ◽  
pp. 71-85 ◽  
Author(s):  
W. Ji ◽  
A. M. Waas

AbstractThis paper is concerned with the development of a failure initiation and progressive failure analysis (PFA) method for advanced composite structures. The present PFA model is capable of predicting interactive out-of-plane and in-plane failure modes observed in fiber reinforced composite laminates including interlaminar behavior and matrix microdamage at the mesoscale. A probability analysis tool is coupled with the PFA to account for uncertainty in modelling parameters caused by material variability and manufacturing inconsistencies. The progressive damage response of a laminated composite panel with an initial delamination is studied and used to demonstrate the PFA modelling framework that is presented here.



Sign in / Sign up

Export Citation Format

Share Document