Design and Analysis of a Foot Contact Sensor for Posture Control of a Biped Robot

Author(s):  
Koray K. S¸afak ◽  
T. Batuhan Baturalp

Development of a planar biped robot is currently underway at Yeditepe University. The robot consists of lower extremities with a torso that are designed at anthropomorphic dimensions. This study describes the design and testing of a foot contact sensor for the biped robot. Dynamic stability of a biped robot is commonly measured by the zero moment point (ZMP) method. Experimentally, ZMP is measured by multi-component force/torque sensors. Due to their low cost and ease of use, force sensitive resistors (FSR) are used to build a foot contact sensor for the biped robot. Four FSRs are mounted at the corners of the robot’s foot to measure the ground reaction force and its moment. Hence, by utilizing the data from the foot contact sensors, a real-time ZMP computation scheme can be implemented. The performance of the designed foot contact sensor is presented by numerical simulations of a planar biped robot’s postural stability control. Results indicate that reaction force computation by the FSR based force sensors is a viable method to monitor postural stability of biped robots. Force sensors and their electronics are currently being built to be used for the actual tests.

2008 ◽  
Vol 20 (5) ◽  
pp. 775-784 ◽  
Author(s):  
Kenji Hashimoto ◽  
◽  
Yusuke Sugahara ◽  
Hun-Ok Lim ◽  
Atsuo Takanishi ◽  
...  

Many researchers have studied walking stability control for biped robots, most of which involve highly precise acceleration controls based on robot model mechanics. Modeling error, however, makes the control algorithms used difficult to apply to biped walking robots intended to transport human users. The “landing pattern modification method” we propose is based on nonlinear admittance control. Theoretical compliance displacement calculated from walking patterns is compared to actual compliance displacement, when a robot's foot contacts slightly uneven terrain. Terrain height is detected and the preset walking pattern is modified accordingly. The new biped foot we also propose forms larger support polygons on uneven terrain than conventional biped foot systems do. Combining our new modification method and foot, a human-carrying biped robot can traverse uneven terrain, as confirmed in walking experiments.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Chih-Yuan Hong ◽  
Lan-Yuen Guo ◽  
Rong Song ◽  
Mark L. Nagurka ◽  
Jia-Li Sung ◽  
...  

By incorporating force transducers into treadmills, force platform-instrumented treadmills (commonly called force treadmills) can collect large amounts of gait data and enable the ground reaction force (GRF) to be calculated. However, the high cost of force treadmills has limited their adoption. This paper proposes a low-cost force treadmill system with force sensors installed underneath a standard exercise treadmill. It identifies and compensates for the force transmission dynamics from the actual GRF applied on the treadmill track surface to the force transmitted to the force sensors underneath the treadmill body. This study also proposes a testing procedure to assess the GRF measurement accuracy of force treadmills. Using this procedure in estimating the GRF of “walk-on-the-spot motion,” it was found that the total harmonic distortion of the tested force treadmill system was about 1.69%, demonstrating the effectiveness of the approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Sumet Heamawatanachai ◽  
Witawit Wiriyasakunphan ◽  
Kanokwan Srisupornkornkool ◽  
Chaiyong Jorrakate

Postural stability control performance assessment is necessary in providing important information for individuals who are at risk of falling or who have balance impairment. Instrumented assessment is suggested as a valid and reliable test, but the cost and the difficulty of setup are significant limitations. The aim of this cross-sectional (test-retest reliability) study was to develop and determine the reliability of a low-cost posturography for assessing postural stability control performance during standing. The low-cost posturography was developed with four load cells and an acrylic platform. The center of pressure (COP) displacement and velocity were analyzed using written software. Test-retest reliability was performed with six different standing postural stability tests in twenty healthy volunteers on two different days. Intraclass correlation coefficient (ICC), standard error of measurement (SEM), coefficient of variation (CV), and Bland–Altman plot and limits of agreements (LOA) were used for analyses. The low-cost posturography was accurate (ICC = 0.99, p < 0.001 ; SEM = 0.003 cm) when compared to the true with calculated X and Y coordinates, with a moderate to excellent test-retest reliability for both COP displacement (ICCs ranged 0.62–0.91, p < 0.05 ; SEMs ranged 17.92–25.77%) and COP velocity (ICCs ranged 0.62–0.91, p < 0.05 ; SEMs ranged 18.09–27.69%) in all standing postural stability tests. Bland–Altman plots and LOAs suggested good agreement of tested parameters from the developed low-cost posturography between different days. In conclusion, the developed low-cost posturography had adequate reliability for assessing COP displacement and velocity during standing postural control stability performance tests.


Author(s):  
William Z. Peng ◽  
Hyunjong Song ◽  
Joo H. Kim

Abstract Push recovery is a vital aspect of balance stability control in biped robots. In this work, the response of a biped system to unexpected external perturbations is analyzed for different tasks and controllers using stability criteria based on balanced and steppable regions. The steppable region for a given step length and the balanced regions for single and double support contacts are constructed for a biped robot using optimization with its system dynamics, kinematic limits, actuation limits, and contact interactions with the environment. The regions are compared with those of a human subject to demonstrate that human gait exhibits unbalanced (but steppable) phases largely absent in robotic gait. These regions are also applied to a comparative analysis against capturability, where the computed steppable region is significantly larger than the capture region of an equivalent reduced-order model. The stability regions are also used to compare the performance of controllers during a double support balancing task. The implemented hip, knee, and ankle strategy-based controller led to improved stabilization — i.e., decreased foot tipping and time required to balance — relative to an existing hip and ankle controller and a gyro feedback controller. The proposed approaches are applicable to the analysis of any bipedal task and stability controller in general.


2013 ◽  
Vol 325-326 ◽  
pp. 1076-1082
Author(s):  
Seyed Mehdi Torklarki ◽  
Mohammad Danesh

Evaluation of 9-DOF biped robots based on designated smooth and stable trajectories with two added toes is a challenging problem that is the focus of this paper. Simultaneously rotation of feet and toes is considered, which allows the robot to walk more efficiently and like a human being. A desired trajectory for the lower body is designed to increase the stability margin. This obtained by fitting proper polynomials at appropriate break points. Then, the upper body motion is planned based on the Zero Moment Point (ZMP) criterion to provide a stable motion for the biped robot. Next, dynamics equations are obtained for both single support phase (SSP) and double support phase (DSP). On the other hand, two biped robots, which one accompanied by toes, are also compared. Simulation results reveal that the biped robots with toes have better stability margin, less power consumption and more vertical reaction force.


Author(s):  
Mohammad Hossein Soorgee ◽  
Aghil Yousefi-Koma ◽  
Behnam Aghbali ◽  
Maryam Kordbache ◽  
Amir Masoud Ghasemi

This paper describes a novel design of force sensors arrangement for measuring ground reaction force on a humanoid foot to find the zero momentum point (ZMP) which is usually used as a stability criterion for a walking biped robot. Precise locating of ZMP highly depends on accurate measurement of reaction force distribution on the foot. Design and fabrication of a sole for a full scale humanoid robot, “Surena” is of interest. A rubber layer is placed on robot sole parallel to force sensors to reduce the effect of impact while robot is walking. Consequently, the force measured by sensors is not total force exerted by the ground. Several foot interaction condition with ground have been modeled using finite element method and force distribution in sole rubber and sensors have been obtained. The resultant is a model which predicts the total force distribution based on four point force measurement. Several experimental situations have been tested and forces have been measured. Experimental results have shown that numerical model could predict force distribution in a good way and location of ZMP has been found successfully.


2021 ◽  
Vol 11 (5) ◽  
pp. 2342
Author(s):  
Long Li ◽  
Zhongqu Xie ◽  
Xiang Luo ◽  
Juanjuan Li

Gait pattern generation has an important influence on the walking quality of biped robots. In most gait pattern generation methods, it is usually assumed that the torso keeps vertical during walking. It is very intuitive and simple. However, it may not be the most efficient. In this paper, we propose a gait pattern with torso pitch motion (TPM) during walking. We also present a gait pattern with torso keeping vertical (TKV) to study the effects of TPM on energy efficiency of biped robots. We define the cyclic gait of a five-link biped robot with several gait parameters. The gait parameters are determined by optimization. The optimization criterion is chosen to minimize the energy consumption per unit distance of the biped robot. Under this criterion, the optimal gait performances of TPM and TKV are compared over different step lengths and different gait periods. It is observed that (1) TPM saves more than 12% energy on average compared with TKV, and the main factor of energy-saving in TPM is the reduction of energy consumption of the swing knee in the double support phase and (2) the overall trend of torso motion is leaning forward in double support phase and leaning backward in single support phase, and the amplitude of the torso pitch motion increases as gait period or step length increases.


2020 ◽  
Vol 34 (03) ◽  
pp. 145-151
Author(s):  
Shimpei Ono ◽  
Hiroyuki Ohi ◽  
Rei Ogawa

AbstractSince propeller flaps are elevated as island flaps and most often nourished by a single perforator nearby the defect, it is challenging to change the flap design intraoperatively when a reliable perforator cannot be found where expected to exist. Thus, accurate preoperative mapping of perforators is essential in the safe planning of propeller flaps. Various methods have been reported so far: (1) handheld acoustic Doppler sonography (ADS), (2) color duplex sonography (CDS), (3) perforator computed tomographic angiography (P-CTA), and (4) magnetic resonance angiography (MRA). To facilitate the preoperative perforator assessment, P-CTA is currently considered as the gold standard imaging tool in revealing the three-dimensional anatomical details of perforators precisely. Nevertheless, ADS remains the most widely used tool due to its low cost, faster learning, and ease of use despite an undesirable number of false-positive results. CDS can provide hemodynamic characteristics of the perforator and is a valid and safer alternative particularly in patients in whom ionizing radiation and/or contrast exposure should be limited. Although MRA is less accurate in detecting smaller perforators of caliber less than 1.0 mm and the intramuscular course of perforators at the present time, MRA is expected to improve in the future due to the recent developments in technology, making it as accurate as P-CTA. Moreover, it provides the advantage of being radiation-free with fewer contrast reactions.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Chin Hong Ooi ◽  
Raja Vadivelu ◽  
Jing Jin ◽  
Sreejith Kamalalayam Rajan ◽  
Pradip Singha ◽  
...  

Liquid marbles are droplets with volume typically on the order of microliters coated with hydrophobic powder. The versatility, ease of use and low cost make liquid marbles an attractive platform...


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4607
Author(s):  
Dounia Elfadil ◽  
Abderrahman Lamaoui ◽  
Flavio Della Pelle ◽  
Aziz Amine ◽  
Dario Compagnone

Detection of relevant contaminants using screening approaches is a key issue to ensure food safety and respect for the regulatory limits established. Electrochemical sensors present several advantages such as rapidity; ease of use; possibility of on-site analysis and low cost. The lack of selectivity for electrochemical sensors working in complex samples as food may be overcome by coupling them with molecularly imprinted polymers (MIPs). MIPs are synthetic materials that mimic biological receptors and are produced by the polymerization of functional monomers in presence of a target analyte. This paper critically reviews and discusses the recent progress in MIP-based electrochemical sensors for food safety. A brief introduction on MIPs and electrochemical sensors is given; followed by a discussion of the recent achievements for various MIPs-based electrochemical sensors for food contaminants analysis. Both electropolymerization and chemical synthesis of MIP-based electrochemical sensing are discussed as well as the relevant applications of MIPs used in sample preparation and then coupled to electrochemical analysis. Future perspectives and challenges have been eventually given.


Sign in / Sign up

Export Citation Format

Share Document