Cost-Effective CO2 Sequestration Through Enhanced Oil Recovery

Author(s):  
Dandina N. Rao ◽  
Zaki A. Bassiouni

Abstract The five-year long United Nations campaign for the reduction of greenhouse gases in the atmosphere culminated in the Kyoto protocol of 1997. Since this Kyoto conference attended by nearly 160 nations, sequestration of carbon dioxide from industrial flue gases and its storage and/or utilization have been receiving significantly enhanced attention. According to the US Department of Energy, very little research and development has been done in the United States on promising options that might address CO2 capture, reuse and storage technologies. An exception to this is the utilization of CO2 for enhanced oil recovery. Over a decade of industrial experience has accumulated at more than 70 enhanced oil recovery sites around the world where CO2 is injected to improve oil recovery from waterflooded reservoirs. The accumulated experience in the US, where about 32 million tons of CO2 per year are being utilized in EOR, has amply demonstrated that the retention of CO2 in the reservoir is very high when the original pressure is not exceeded. Thus, CO2 injected enhanced oil recovery presents itself as a mature field-tested technology for sequestering CO2 at a low net cost due to the revenues from recovered oil and gas. Much of the CO2-EOR experience to date in the US involves the use of high-purity carbon dioxide for conducting miscible floods in conventional crude oil reservoirs. Due to the high costs associated with supplying high-purity CO2 to the reservoir, this process has seen limited commercial success. However, the past research at LSU and elsewhere has amply demonstrated that impure CO2 was also effective in enhancing oil recoveries. This makes the abundant supply of flue gases from fossil-fuel combustion operations a viable and cost-effective option without the need for separating CO2 from the flue gas mixtures. This paper attempts to review and synthesize the literature dealing with geologic sequestration of CO2 in EOR projects. The available data are analyzed both from EOR and CO2 sequestration points of view.

2017 ◽  
Vol 114 ◽  
pp. 7055-7059 ◽  
Author(s):  
Peter D. Warwick ◽  
Mahendra K. Verma ◽  
Emil D. Attanasi ◽  
Ricardo A. Olea ◽  
Madalyn S. Blondes ◽  
...  

2021 ◽  
Author(s):  
Elena Subia Melchert ◽  
Roy Clayton Long

Abstract Last year the Department of Energy (DOE) presented a description of the expansion of its research portfolio from one focused on research primarily for onshore applications to one that includes projects specifically for offshore application. That paper (OTC - 30469-MS) also included key research results for the portfolio beginning with projects initiated in 2007. This paper follows on that theme and presents an overview of the Department's current research portfolio focusing on recent-past learnings, current learnings, and research gaps identified from the projects in the current research portfolio 2017-2023. Discussion includes projects that are sponsored by the Department as part of its public-private partnerships with principal investigators from industry and academia, and those projects sponsored by the Department at its National Laboratories. The discussion also includes an overview of activities and projects jointly pursued by DOE and the Department of the Interior's Bureau of Safety and Environmental Enforcement (BSEE) pursuant to the July 2020 Memorandum of Collaboration signed by both agencies. Major insights presented in this paper focus on innovative mid-Technology Readiness Level (mid-TRL) technologies that will enable cost-effective enhanced oil recovery in deepwater and ultra-deepwater including insights for cement and wellbore integrity, flow assurance, life extension of offshore platforms and risers, sensors and telecommunications, early kick detection, chemical delivery, data analytics involving big data sets and modeling, and advanced sensors for EOR operations. Many of the projects reviewed in this paper are part of the portfolio of projects that are sponsored by the Department at the National Laboratories while at the same time includes projects that are cost-shared with private sector and research partners in academia. The breadth of the portfolio illustrates the overall approach of the offshore research portfolio especially for enhanced oil recovery. Recently the National Petroleum Council completed a study for the Secretary of Energy titled Meeting the Dual Challenge: A roadmap to at-scale deployment of carbon capture, use, and storage in which the potential for the use and potential long-term storage of CO2 used in enhanced oil recovery is considered for both onshore and offshore settings (NPC 2019).


Author(s):  
Trine S. Mykkeltvedt ◽  
Sarah E. Gasda ◽  
Tor Harald Sandve

AbstractCarbon-neutral oil production is one way to improve the sustainability of petroleum resources. The emissions from produced hydrocarbons can be offset by injecting capture CO$$_{2}$$ 2 from a nearby point source into a saline aquifer for storage or a producing oil reservoir. The latter is referred to as enhanced oil recovery (EOR) and would enhance the economic viability of CO$$_{2}$$ 2 sequestration. The injected CO$$_{2}$$ 2 will interact with the oil and cause it to flow more freely within the reservoir. Consequently, the overall recovery of oil from the reservoir will increase. This enhanced oil recovery (EOR) technique is perceived as the most cost-effective method for disposing captured CO$$_{2}$$ 2 emissions and has been performed for many decades with the focus on oil recovery. The interaction between existing oil and injected CO$$_{2}$$ 2 needs to be fully understood to effectively manage CO$$_{2}$$ 2 migration and storage efficiency. When CO$$_{2}$$ 2 and oil mix in a fully miscible setting, the density can change non-linearly and cause density instabilities. These instabilities involve complex convective-diffusive processes, which are hard to model and simulate. The interactions occur at the sub-centimeter scale, and it is important to understand its implications for the field scale migration of CO$$_{2}$$ 2 and oil. In this work, we simulate gravity effects, namely gravity override and convective mixing, during miscible displacement of CO$$_{2}$$ 2 and oil. The flow behavior due to the competition between viscous and gravity effects is complex, and can only be accurately simulated with a very fine grid. We demonstrate that convection occurs rapidly, and has a strong effect on breakthrough of CO$$_{2}$$ 2 at the outlet. This work for the first time quantifies these effects for a simple system under realistic conditions.


2021 ◽  
Vol 7 ◽  
pp. 960-967
Author(s):  
Mohammad Hossein Ahmadi ◽  
S.M. Alizadeh ◽  
Dmitry Tananykhin ◽  
Saba Karbalaei Hadi ◽  
Pavel Iliushin ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 103
Author(s):  
Miguel Ladero

Energy policies in the US and in the EU during the last decades have been focused on enhanced oil and gas recovery, including the so-called tertiary extraction or enhanced oil recovery (EOR), on one hand, and the development and implementation of renewable energy vectors, on the other, including biofuels as bioethanol (mainly in US and Brazil) and biodiesel (mainly in the EU) [...]


2004 ◽  
Vol 126 (2) ◽  
pp. 119-124 ◽  
Author(s):  
O. S. Shokoya ◽  
S. A. (Raj) Mehta ◽  
R. G. Moore ◽  
B. B. Maini ◽  
M. Pooladi-Darvish ◽  
...  

Flue gas injection into light oil reservoirs could be a cost-effective gas displacement method for enhanced oil recovery, especially in low porosity and low permeability reservoirs. The flue gas could be generated in situ as obtained from the spontaneous ignition of oil when air is injected into a high temperature reservoir, or injected directly into the reservoir from some surface source. When operating at high pressures commonly found in deep light oil reservoirs, the flue gas may become miscible or near–miscible with the reservoir oil, thereby displacing it more efficiently than an immiscible gas flood. Some successful high pressure air injection (HPAI) projects have been reported in low permeability and low porosity light oil reservoirs. Spontaneous oil ignition was reported in some of these projects, at least from laboratory experiments; however, the mechanism by which the generated flue gas displaces the oil has not been discussed in clear terms in the literature. An experimental investigation was carried out to study the mechanism by which flue gases displace light oil at a reservoir temperature of 116°C and typical reservoir pressures ranging from 27.63 MPa to 46.06 MPa. The results showed that the flue gases displaced the oil in a forward contacting process resembling a combined vaporizing and condensing multi-contact gas drive mechanism. The flue gases also became near-miscible with the oil at elevated pressures, an indication that high pressure flue gas (or air) injection is a cost-effective process for enhanced recovery of light oils, compared to rich gas or water injection, with the potential of sequestering carbon dioxide, a greenhouse gas.


Sign in / Sign up

Export Citation Format

Share Document