Numerical Simulation of Internal Cavities Acoustic Trapped Modes With Mean Flow

Author(s):  
Kareem Aly ◽  
Samir Ziada

Flow-excited acoustic resonance of trapped modes in ducts has been reported in different engineering applications. The excitation mechanism of these modes results from the interaction between the hydrodynamic flow field and the acoustic particle velocity, and is therefore dependent on the mode shape of the resonant acoustic field, including the amplitude and phase distributions of the acoustic particle velocity. For a cavity-duct system, the aerodynamic excitation of the trapped modes can generate strong pressure pulsations at moderate Mach numbers (M>0.1). This paper investigates numerically the effect of mean flow on the characteristics of the acoustic trapped modes for a cavity-duct system. Numerical simulations are performed for a two-dimensional planar configuration and different flow Mach numbers up to 0.3. A two-step numerical scheme is adopted in the investigation. A linearized acoustic perturbation equation is used to predict the acoustic field. The results show that as the Mach number is increased, the acoustic pressure distribution develops an axial phase gradient, but the shape of the amplitude distribution remains the same. Moreover, the amplitude and phase distributions of the acoustic particle velocity are found to change significantly near the cavity shear layer with the increase of the mean flow Mach number. These results demonstrate the importance of considering the effects of the mean flow on the flow-sound interaction mechanism.

2001 ◽  
Vol 105 (1043) ◽  
pp. 9-16 ◽  
Author(s):  
S. B. Verma ◽  
E. Rathakrishnan

Abstract The shock-structure and the related acoustic field of underexpanded jets undergoes significant changes as the Mach number Mj is increased. The present investigation is carried out to study the effect of Mach number on an underexpanded 2:1 elliptic-slot jet. Experimental data are presented for fully expanded Mach numbers ranging from 1.3 to 2.0. It is observed that the ‘cross-over’ point at the end of the first cell at low Mach numbers gets replaced by a normal shock at a highly underexpanded condition resulting in the formation of a ‘barrel’ shock along the minor-axis side with a ‘bulb’ shock formed along the major-axis side. The above change in shock structure is accompanied by a related change in the acoustic field. The amplitude of fundamental frequency along the minor-axis side grows with Mj but falls beyond Mj = 1.75. Along the major-axis side, however, the fundamental frequency does not exist at low Mach numbers. It appears at Mj = 1.75 but then falls at Mj = 2.0. The related azimuthal directivity of overall noise levels (OASPL) shows significant changes with Mj.


1997 ◽  
Vol 119 (3) ◽  
pp. 448-456 ◽  
Author(s):  
A. Frendi ◽  
L. Maestrello

Numerical experiments in two dimensions are carried out in order to investigate the response of a typical aircraft structure to a mean flow and an acoustic excitation. Two physical problems are considered; one in which the acoustic excitation is applied on one side of the flexible structure and the mean flow is on the other side while in the second problem both the mean flow and acoustic excitation are on the same side. Subsonic and supersonic mean flows are considered together with a random and harmonic acoustic excitation. In the first physical problem and using a random acoustic excitation, the results show that at low excitation levels the response is unaffected by the mean flow Mach number. However, at high excitation levels the structural response is significantly reduced by increasing the Mach number. In particular, both the shift in the frequency response spectrum and the broadening of the peaks are reduced. In the second physical problem, the results show that the response spectrum is dominated by the lower modes (1 and 3) for the subsonic mean flow case and by the higher modes (5 and 7) in the supersonic case. When a harmonic excitation is used, it is found that in the subsonic case the power spectral density of the structural response shows a subharmonic (f/4) while in the supersonic case no subharmonic is obtained.


2000 ◽  
Vol 421 ◽  
pp. 229-267 ◽  
Author(s):  
JONATHAN B. FREUND ◽  
SANJIVA K. LELE ◽  
PARVIZ MOIN

This work uses direct numerical simulations of time evolving annular mixing layers, which correspond to the early development of round jets, to study compressibility effects on turbulence in free shear flows. Nine cases were considered with convective Mach numbers ranging from Mc = 0.1 to 1.8 and turbulence Mach numbers reaching as high as Mt = 0.8.Growth rates of the simulated mixing layers are suppressed with increasing Mach number as observed experimentally. Also in accord with experiments, the mean velocity difference across the layer is found to be inadequate for scaling most turbulence statistics. An alternative scaling based on the mean velocity difference across a typical large eddy, whose dimension is determined by two-point spatial correlations, is proposed and validated. Analysis of the budget of the streamwise component of Reynolds stress shows how the new scaling is linked to the observed growth rate suppression. Dilatational contributions to the budget of turbulent kinetic energy are found to increase rapidly with Mach number, but remain small even at Mc = 1.8 despite the fact that shocklets are found at high Mach numbers. Flow visualizations show that at low Mach numbers the mixing region is dominated by large azimuthally correlated rollers whereas at high Mach numbers the flow is dominated by small streamwise oriented structures. An acoustic timescale limitation for supersonically deforming eddies is found to be consistent with the observations and scalings and is offered as a possible explanation for the decrease in transverse lengthscale.


Author(s):  
Sylvain C. Humbert ◽  
Jonas Moeck ◽  
Alessandro Orchini ◽  
Christian Oliver Paschereit

Abstract Thermoacoustic oscillations in axisymmetric annular combustors are generally coupled by degenerate azimuthal modes, which can be of standing or spinning nature. Symmetry breaking due to the presence of a mean azimuthal flow splits the degenerate thermoacoustic eigenvalues, resulting in pairs of counter-spinning modes with close but distinct frequencies and growth rates. In this study, experiments have been performed using an annular system where the thermoacoustic feedback due to the flames is mimicked by twelve identical electroacoustic feedback loops. The mean azimuthal flow is generated by fans. We investigate the standing/spinning nature of the oscillations as a function of the Mach number for two types of initial states, and how the stability of the system is affected by the mean azimuthal flow. It is found that spinning, standing or mixed modes can be encountered at very low Mach number, but increasing the mean velocity promotes one spinning direction. At sufficiently high Mach number, spinning modes are observed in the limit cycle oscillations. In some cases, the initial conditions have a significant impact on the final state of the system. It is found that the presence of a mean azimuthal flow increases the acoustic damping. This has a beneficial effect on stability: it often reduces the amplitude of the self-sustained oscillations, and can even suppress them in some cases. However, we observe that the suppression of a mode due to the mean flow may destabilize another one. We discuss our findings in relation with an existing low-order model.


The theory of sound generated aerodynamically is extended by taking into account the statistical properties of turbulent airflows, from which the sound radiated (without the help of solid boundaries) is called aerodynamic noise. The theory is developed with special reference to the noise of jets, for which a detailed comparison with experiment is made (§7 for subsonic jets, §8 for supersonic ones). The quadrupole distribution of part I (Lighthill 1952) is shown to behave (see §3) as if it were concentrated into independent point quadrupoles, one in each ‘average eddy volume’. The sound field of each of these is distorted, in favour of downstream emission, by the general downstream motion of the eddy, in accordance with the quadrupole convection theory of part I. This explains, for jet noise, the marked preference for downstream emission, and its increase with jet velocity. For jet velocities considerably greater than the atmospheric speed of sound, the ‘Mach number of convection’ M c may exceed I in parts of the jet, and then the directional maximum for emission from these parts of the jet is at an angle of sec -1 ( M c ) to the axis (§8). Although turbulence without any mean flow has an acoustic power output, which was calculated to a rough approximation from the expressions of part I by Proudman (1952) (see also § 4 below), nevertheless, turbulence of given intensity can generate more sound in the presence of a large mean shear (§ 5). This sound has a directional maximum at 45° (or slightly less, due to the quadrupole convection effect) to the shear layer. These results follow from the fact that the most important term in the rate of change of momentum flux is the product of the pressure and the rate of strain (see figure 2). The higher frequency sound from the heavily sheared mixing region close to the orifice of a jet is found to be of this character. But the lower frequency sound from the fully turbulent core of the jet, farther downstream, can be estimated satisfactorily (§7) from Proudman’s results, which are here reinterpreted (§5) in terms of sound generated from combined fluctuations of pressure and rate of shear in the turbulence. The acoustic efficiency of the jet is of the order of magnitude 10 -4 M 5 , where M is the orifice Mach number. However, the good agreement, as regards total acoustic power output, with the dimensional considerations of part I, is partly fortuitous. The quadrupole convection effect should produce an increase in the dependence of acoustic power on the jet velocity above the predicted U 8 law. The experiments show that (largely cancelling this) some other dependence on velocity is present, tending to reduce the intensity, at the stations where the convection effect would be absent, below the U 8 law. At these stations (at 90° to the jet) proportionality to about U 6.5 is more common. A suggested explanation of this, compatible with the existing evidence, is that at higher Mach numbers there may be less turbulence (especially for larger values of nd / U , where n is frequency and d diameter), because in the mixing region, where the turbulence builds up, it is losing energy by sound radiation. This would explain also the slow rate of spread of supersonic mixing regions, and, indeed, is not incompatible with existing rough explanations of that phenomenon. A consideration (§6) of whether the terms other than momentum flux in the quadrupole strength density might become important in heated jets indicates that they should hardly ever be dominant. Accordingly, the physical explanation (part I) of aerodynamic sound generation still stands. It is re-emphasized, however, that whenever there is a fluctuating force between the fluid and a solid boundary, a dipole radiation will result which may be more efficient than the quadrupole radiation, at least at low Mach numbers.


2005 ◽  
Vol 4 (1-2) ◽  
pp. 69-91 ◽  
Author(s):  
R. Ewert ◽  
J.W. Delfs ◽  
M. Lummer

The capability of three different perturbation approaches to tackle airframe noise problems is studied. The three approaches represent different levels of complexity and are applied to trailing edge noise problems. In the Euler-perturbation approach the linearized Euler equations without sources are used as governing acoustic equations. The sound generation and propagation is studied for several trailing edge shapes (blunt, sharp, and round trailing edges) by injecting upstream of the trailing edge test vortices into the mean-flow field. The efficiency to generate noise is determined for the trailing edge shapes by comparing the different generated sound intensities due to an initial standard vortex. Mach number scaling laws are determined varying the mean-flow Mach number. In the second simulation approach an extended acoustic analogy based on acoustic perturbation equations (APEs) is applied to simulate trailing edge noise of a flat plate. The acoustic source terms are computed from a synthetic turbulent velocity model. Furthermore, the far field is computed via additional Kirchhoff extrapolation. In the third approach the sources of the extended acoustic analogy are computed from a Large Eddy Simulation (LES) of the compressible flow problem. The directivities due to a modeled and a LES based source, respectively, compare qualitatively well in the near field. In the far field the asymptotic directivities from the Kirchhoff extrapolation agree very well with the analytical solution of Howe. Furthermore, the sound pressure spectra can be shown to have similar shape and magnitude for the last two approaches.


Author(s):  
B. F. Farrell ◽  
D. F. Gayme ◽  
P. J. Ioannou

This paper reviews results obtained using statistical state dynamics (SSD) that demonstrate the benefits of adopting this perspective for understanding turbulence in wall-bounded shear flows. The SSD approach used in this work employs a second-order closure that retains only the interaction between the streamwise mean flow and the streamwise mean perturbation covariance. This closure restricts nonlinearity in the SSD to that explicitly retained in the streamwise constant mean flow together with nonlinear interactions between the mean flow and the perturbation covariance. This dynamical restriction, in which explicit perturbation–perturbation nonlinearity is removed from the perturbation equation, results in a simplified dynamics referred to as the restricted nonlinear (RNL) dynamics. RNL systems, in which a finite ensemble of realizations of the perturbation equation share the same mean flow, provide tractable approximations to the SSD, which is equivalent to an infinite ensemble RNL system. This infinite ensemble system, referred to as the stochastic structural stability theory system, introduces new analysis tools for studying turbulence. RNL systems provide computationally efficient means to approximate the SSD and produce self-sustaining turbulence exhibiting qualitative features similar to those observed in direct numerical simulations despite greatly simplified dynamics. The results presented show that RNL turbulence can be supported by as few as a single streamwise varying component interacting with the streamwise constant mean flow and that judicious selection of this truncated support or ‘band-limiting’ can be used to improve quantitative accuracy of RNL turbulence. These results suggest that the SSD approach provides new analytical and computational tools that allow new insights into wall turbulence. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’.


2000 ◽  
Vol 411 ◽  
pp. 91-130 ◽  
Author(s):  
I. EVERS ◽  
N. PEAKE

The method of matched asymptotic expansions is used to describe the sound generated by the interaction between a short-wavelength gust (reduced frequency k, with k [Gt ] 1) and an airfoil with small but non-zero thickness, camber and angle of attack (which are all assumed to be of typical size O(δ), with δ [Lt ] 1) in transonic flow. The mean-flow Mach number is taken to differ from unity by O(δ2/3), so that the steady flow past the airfoil is determined using the transonic small-disturbance equation. The unsteady analysis is based on a linearization of the Euler equations about the mean flow. High-frequency incident vortical and entropic disturbances are considered, and analogous to the subsonic counterpart of this problem, asymptotic regions around the airfoil highlight the mechanisms that produce sound. Notably, the inner region round the leading edge is of size O(k−1), and describes the interaction between the mean-flow gradients and the incident gust and the resulting acoustic waves. We consider the preferred limit in which kδ2/3 = O(1), and calculate the first two terms in the phase of the far-field radiation, while for the directivity we determine the first term (δ = 0), together with all higher-order terms which are at most O(δ2/3) smaller – in fact, this involves no fewer than ten terms, due to the slowly-decaying form of the power series expansion of the steady flow about the leading edge. Particular to transonic flow is the locally subsonic or supersonic region that accounts for the transition between the acoustic field downstream of a source and the possible acoustic field upstream of the source. In the outer region the sound propagation has a geometric-acoustics form and the primary influence of the mean-flow distortion appears in our preferred limit as an O(1) phase term, which is particularly significant in view of the complicated interference between leading- and trailing-edge fields. It is argued that weak mean- flow shocks have an influence on the sound generation that is small relative to the effects of the leading-edge singularity.


2012 ◽  
Vol 704 ◽  
pp. 388-420 ◽  
Author(s):  
André V. G. Cavalieri ◽  
Peter Jordan ◽  
Tim Colonius ◽  
Yves Gervais

AbstractWe present experimental results for the acoustic field of jets with Mach numbers between 0.35 and 0.6. An azimuthal ring array of six microphones, whose polar angle, $\theta $, was progressively varied, allows the decomposition of the acoustic pressure into azimuthal Fourier modes. In agreement with past observations, the sound field for low polar angles (measured with respect to the jet axis) is found to be dominated by the axisymmetric mode, particularly at the peak Strouhal number. The axisymmetric mode of the acoustic field can be clearly associated with an axially non-compact source, in the form of a wavepacket: the sound pressure level for peak frequencies is found be superdirective for all Mach numbers considered, with exponential decay as a function of $ \mathop{ (1\ensuremath{-} {M}_{c} \cos \theta )}\nolimits ^{2} $, where ${M}_{c} $ is the Mach number based on the phase velocity ${U}_{c} $ of the convected wave. While the mode $m= 1$ spectrum scales with Strouhal number, suggesting that its energy content is associated with turbulence scales, the axisymmetric mode scales with Helmholtz number – the ratio between source length scale and acoustic wavelength. The axisymmetric radiation has a stronger velocity dependence than the higher-order azimuthal modes, again in agreement with predictions of wavepacket models. We estimate the axial extent of the source of the axisymmetric component of the sound field to be of the order of six to eight jet diameters. This estimate is obtained in two different ways, using, respectively, the directivity shape and the velocity exponent of the sound radiation. The analysis furthermore shows that compressibility plays a significant role in the wavepacket dynamics, even at this low Mach number. Velocity fluctuations on the jet centreline are reduced as the Mach number is increased, an effect that must be accounted for in order to obtain a correct estimation of the velocity dependence of sound radiation. Finally, the higher-order azimuthal modes of the sound field are considered, and a model for the low-angle sound radiation by helical wavepackets is developed. The measured sound for azimuthal modes 1 and 2 at low Strouhal numbers is seen to correspond closely to the predicted directivity shapes.


Author(s):  
Naren Shankar Radha Krishnan ◽  
Dilip Raja Narayana

Effect of Mach number on coflowing jet at lip thickness of 0.2 Dp, 1.0 Dp and 1.5 Dp (where Dp is primary nozzle exit diameter, 10 mm) at Mach numbers 1.0, 0.8 and 0.6 were studied experimentally. It was found that an increase in Mach number does not have any profound effect on axial total and static pressure variation for 0.2 Dp. Decreasing the mean diameter is due to the geometrical constraints. In this study, the primary nozzle dimension and secondary duct is maintained constant for comparison. For the case of 0.2 Dp, static pressure is almost equal to atmospheric pressure for all Mach numbers. Whereas for other two lip thickness, increase in Mach number marginally influences axial total pressure and profoundly varies static pressure. It is noted that it varies considerably up to 11.1% in the axial direction and up to 17% in the radial direction for Mach number 1.0. For lower Mach numbers, such variation is not observed. Increase in Mach number increases static pressure variation in the coflowing jet flow field with lip thickness 1.0 Dp and 1.5 Dp.


Sign in / Sign up

Export Citation Format

Share Document