Numerical and Experimental Evaluation of Lift Forces in Flows Around Surface-Mounted Bluff Bodies

Author(s):  
T. Stengel ◽  
F. Ebert ◽  
M. Fallen

The flow around a surface-mounted bluff body with cuboid shape is investigated. Therefore, the velocity field including the distribution of the turbulent kinetic energy is computed and compared with experimental Laser Doppler Anemometry data. Several different turbulence models, namely the standard k-ε model, the Wolfshtein two-layer k-ε model and a Large-Eddy approach are validated. Since the Large-Eddy model remains the only model representing the flow accurate, it is chosen for further investigations. The pressure distribution on the body and on the carrying surface around the body is analysed. The lift coefficients are computed for Reynolds numbers, ranging from 1.1 × 104 up to 4.4 × 104. The lengths of the separation zone above and the recirculation zone downstream the body are evaluated.

Author(s):  
Mohammad Javad Izadi ◽  
Pegah Asghari ◽  
Malihe Kamkar Delakeh

The study of flow around bluff bodies is important, and has many applications in industry. Up to now, a few numerical studies have been done in this field. In this research a turbulent unsteady flow round a cube is simulated numerically. The LES method is used to simulate the turbulent flow around the cube since this method is more accurate to model time-depended flows than other numerical methods. When the air as an ideal fluid flows over the cube, flow separate from the back of the body and unsteady vortices appears, causing a large wake behind the cube. The Near-Wake (wake close to the body) plays an important role in determining the steady and unsteady forces on the body. In this study, to see the effect of the free stream velocity on the surface pressure behind the body, the Reynolds number is varied from one to four million and the pressure on the back of the cube is calculated numerically. From the results of this study, it can be seen that as the velocity or the Reynolds number increased, the pressure on the surface behind the cube decreased, but the rate of this decrease, increased as the free stream flow velocity increased. For high free stream velocities the base pressure did not change as much and therefore the base drag coefficient stayed constant (around 1.0).


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
J. C. Hu ◽  
Y. Zhou

The wake of asymmetric bluff bodies was experimentally measured using particle imaging velocimetry, laser Doppler anemometry, load cell, hotwire, and flow visualization techniques at Re=2600–8500 based on the freestream velocity and the characteristic height of the bluff bodies. Asymmetry is produced by rounding some corners of a square cylinder and leaving others unrounded. It is found that, with increasing corner radius, the flow reversal region is expanded, and the vortex formation length is prolonged. Accordingly, the vortex shedding frequency increases and the base pressure rises, resulting in a reduction in the mean drag as well as the fluctuating drag and lift. It is further found that, while the asymmetric cross section of the cylinder causes the wake centerline to shift toward the sharp corner side of the bluff body, the wake remains globally symmetric about the shifted centerline. The near wake of asymmetric bluff bodies is characterized in detail, including the Reynolds stresses, characteristic velocity, and length scale, and is further compared with that of the symmetric ones.


2019 ◽  
Vol 213 ◽  
pp. 02076
Author(s):  
Jan Sip ◽  
Frantisek Lizal ◽  
Jakub Elcner ◽  
Jan Pokorny ◽  
Miroslav Jicha

The velocity field in the area behind the automotive vent was measured by hot-wire anenemometry in detail and intensity of turbulence was calculated. Numerical simulation of the same flow field was performed using Computational fluid dynamics in commecial software STAR-CCM+. Several turbulence models were tested and compared with Large Eddy Simulation. The influence of turbulence model on the results of air flow from the vent was investigated. The comparison of simulations and experimental results showed that most precise prediction of flow field was provided by Spalart-Allmaras model. Large eddy simulation did not provide results in quality that would compensate for the increased computing cost.


Author(s):  
Baiheng Wu ◽  
Jorlyn Le Garrec ◽  
Dixia Fan ◽  
Michael S. Triantafyllou

Currents and waves cause flow-structure interaction problems in systems installed in the ocean. Particularly for bluff bodies, vortices form in the body wake, which can cause strong structural vibrations (Vortex-Induced Vibrations, VIV). The magnitude and frequency content of VIV is determined by the shape, material properties, and size of the bluff body, and the nature and velocity of the oncoming flow. Riser systems are extensively used in the ocean to drill for oil wells, or produce oil and gas from the bottom of the ocean. Risers often consist of a central pipe, surrounded by several smaller cylinders, including the kill and choke lines. We present a series of experiments involving forced in-line and cross flow motions of short rigid sections of a riser containing 6 symmetrically arranged kill and choke lines. The experiments were carried out at the MIT Towing Tank. We present a systematic database of the hydrodynamic coefficients, consisting of the forces in phase with velocity and the added mass coefficients that are also suitable to be used with semi-empirical VIV predicting codes.


Author(s):  
Chih-Hua Wu ◽  
Shengwei Ma ◽  
Chang-Wei Kang ◽  
Teck-Bin Arthur Lim ◽  
Rajeev Kumar Jaiman ◽  
...  

Bluff body structures exposed to ocean current can undergo vortex-induced motion (VIM) for certain geometric and physical conditions. Recently, the study of VIM has been gaining attention for many engineering applications, in particular offshore structures such as buoys, FPSOs, semi-submersibles, Spars and TLPs. The present work is a part of a systematic effort to investigate the VIM response of multi-columns floating platform. In real sea condition, floating platforms are in high Reynolds numbers region and flow patterns around structures are turbulent in nature. For the purpose of investigating and simulating accurately the nonlinear dynamic processes of vortex shedding, transport and wake interactions with the bluff body, the fundamental study of VIM around a square column at moderate Reynolds numbers (1500 ≤ Re ≤ 14000) is firstly investigated. In the present work, the transient flow pattern around a free vibrating square cylinder at moderate Reynolds numbers is numerically investigated by an open source CFD toolbox, OpenFOAM. Good consistency and agreement are found between the present numerical findings and that of experiments. The cylinder, with a blockage area of 4.2%, is mounted on an elastic support for free vibration in the transverse direction. Hybrid RANS-LES turbulence models are considered here for accurate prediction of massively separated turbulent wake flow while maintaining the reasonable computational cost. Three hybrid turbulence models, the DDES (Delayed Detached Eddy Simulation, the k-ω SST-DES (Detached Eddy Simulation), and the k–ω SST-SAS (Scale Adaptive Simulation), are studied and their results are compared with the reported experimental measurements. It is shown that the result of simulation with the k–ω SST-SAS model is closer to the reported literature than the other two and therefore, subsequently adopted for all the simulations of our study in this paper. The scaling effect of cylinder length in the spanwise direction is also studied with the objective to reduce the computational cost. From the comparison with the recent experimental measurements, the discrepancy between the present simulations of reducing cylinder length and the experiment increases only when Re ≥ 4000. This might stem from the increase in wavelength of some vortex shedding modes and turbulence intensity variation in the spanwise direction near the cylinder as Re ≥ 4000. The detailed flow patterns, 3D vortex structures (based on Q-criterion) and vortex-shedding modes are presented in this work as well.


2015 ◽  
Vol 787 ◽  
pp. 727-731 ◽  
Author(s):  
S. Boopathi ◽  
P. Maran ◽  
V. Caleb Eugene ◽  
S. Prabhu

The experimental investigation has been carried out to study the stabilization and blowout mechanisms of turbulent flame stabilized by V-gutter bluff body in a square duct at reactive and non-reactive conditions. V-shaped bluff bodies made of stainless steel having 1.6 mm thicknessare used for stabilization of the flame.Experiments have been conducted at selective velocities of commercially available methane and oxygen with 60 degree V-gutter as flame holder. It is observed that at stoichiometric conditions, the V-gutter is dominated by shear layer stabilized flames. The flame stability is influenced by bluff body dimensions and mass flow rate which play a major role in combustion instabilities mixing of air fuel ratio and blow off. The lift off decreases at higher blockage ratios.A strong recirculation zone is found in this test rig immediately downstream of the V-Gutter which gradually subsides and disappears far downstream.The lift off height is not much affected by the velocity of the fuel-air mixture.


Author(s):  
Shih-Hao Yang ◽  
Chien C. Chang ◽  
Chin-Chou Chu ◽  
Shi-Hua Liao ◽  
R. L. Chern

In the present study, we show how drag reduction of a bluff body can be achieved on a rational basis of a force theory. The force theory indicates where is the best location to apply the surface control to minimize the drag on the body. In particular, the method of drag reduction is illustrated for flow around a circular cylinder. It is shown that drag reduction for the circular cylinder can be as efficient as 46.5%.


Author(s):  
Mohammad J. Izadi

In this paper, a 3-D flow field around two bluff bodies in an incompressible fluid is modeled [1]. Formations of these two bodies are top to top (One on the top of the other) with respect to the center of each other. The lower on has a constant cross sectional area with a vent of air at its apex and the upper one has a variable cross sectional area with no vent on it. The vertical distances between the bluff bodies, the cross sectional area, and also the vent ratio of bluff bodies are varied here. Vertical distances of these two bodies are varied form zero to half, equal, double and triple the radius of the body with a vent on it (lower body). Flow condition is considered 3D, steady, turbulent, and incompressible. The drag force on each body and also the pressure around the two bodies are calculated. From the numerical results, it can be seen that, the drag force is constant over the range of zero to twenty percent of the vent ratios and for higher vent ratios when the upper bluff body is smaller than the lower one the drag force decreased, and it increased when the upper bluff body is larger than the lower one.


2019 ◽  
Vol 875 ◽  
pp. 699-724 ◽  
Author(s):  
James C. Massey ◽  
Ivan Langella ◽  
Nedunchezhian Swaminathan

The recirculation zone length behind a bluff body is influenced by the turbulence intensity at the base of the body in isothermal flows and also the heat release and its interaction with turbulence in reacting flows. This relationship is observed to be nonlinear and is controlled by the balance of forces acting on the recirculation zone, which arise from the pressure and turbulence fields. The pressure force is directly influenced by the volumetric expansion resulting from the heat release, whereas the change in the turbulent shear force depends on the nonlinear interaction between turbulence and combustion. This behaviour is elucidated through a control volume analysis. A scaling relation for the recirculation zone length is deduced to relate the turbulence intensity and the amount of heat release. This relation is verified using the large eddy simulation data from 20 computations of isothermal flows and premixed flames that are stabilised behind the bluff body. The application of this scaling to flames in an open environment and behind a backward facing step is also explored. The observations and results are explained on a physical basis.


Author(s):  
Won-Wook Kim ◽  
Jeffrey J. Lienau ◽  
Paul R. Van Slooten ◽  
Meredith B. Colket ◽  
Robert E. Malecki ◽  
...  

The objective of this study was to assess the accuracy of the Large-Eddy Simulation (LES) methodology, with a simple combustion closure based on equilibrium chemistry, for simulating turbulent reacting flows behind a bluff body flameholder. Specifically, the variation in recirculation zone length with change in equivalence ratio was calculated and compared to experimental measurements. It was found that the present LES modeling approach can reproduce this variation accurately. However, it understated the recirculation zone length at the stoichiometric condition. The approach was assessed at the lean blow out (LBO) condition to evaluate its behavior at the lean limit and to analyze the physics of combustion instability.


Sign in / Sign up

Export Citation Format

Share Document