Effect of Rotor-Stator Configuration in the Generation of Vortical Scales and Wake Mixing in Single Stage Axial Fans: Part II — Assessment of Vortex Sound Sources

Author(s):  
Mónica Galdo Vega ◽  
Jesus Manuel Fernandez Oro ◽  
Katia María Argüelles Díaz ◽  
Carlos Santolaria Morros

This second part is devoted to the identification of vortex sound sources in low-speed turbomachinery. As a starting point, the time-resolved evolution of the vortical motions associated to the wake shear layers (reported in the first part of the present study) is employed to obtain vorticity distributions in both blade-to-blade and traverse locations throughout the axial fan stage. Following, the Powell analogy for generation of vortex sound is revisited to obtain the noise sources in the nearfield region of the fan. Both numerical and experimental databases presented previously are now post-processed to achieve a deep understanding of the aeroacoustic behavior of the vortical scales present in the flow. A LES simulation at midspan, using a 2.5D scheme, allows an accurate description of the turn-out time of the shedding vortices, within high-density meshes in the blades and vanes passages, and a correct modeling of the dynamics of turbulence. Besides, thermal anemometry has been employed with a two-wire probe to measure the planar flow in the midspan sections of the fan. Statistical procedures and signal conditioning of velocity traces have confirmed experimentally the unsteady flow patterns devised in the numerical model. The comparison of the rotor-stator and the stator-rotor configurations provides the influence of the wake mixing and the nucleation of turbulent spots in the distribution of the Powell source terms. Moreover, the relation between the turbomachine configuration and the generation of vortex sound can be established, including the impact of the operating conditions and the contributions of the interaction mechanisms.

Author(s):  
Benjamin Pardowitz ◽  
Ulf Tapken ◽  
Lars Neuhaus ◽  
Lars Enghardt

Rotating instability (RI) occurs at off-design conditions in axial compressors, predominantly in rotor configurations with large tip clearances. Characteristic spectral signatures with side-by-side peaks below the blade passing frequency (BPF) are typically referred to RI located in the clearance region next to the leading edge (LE). Each peak can be assigned to a dominant circumferential mode. RI is the source of the clearance noise (CN) and an indicator for critical operating conditions. Earlier studies at an annular cascade pointed out that RI modes of different circumferential orders occur stochastically distributed in time and independently from each other, which is contradictory to existing explanations of RI. Purpose of the present study is to verify this generally with regard to axial rotor configurations. Experiments were conducted on a laboratory axial fan stage mainly using unsteady pressure measurements in a sensor ring near the rotor LE. A mode decomposition based on cross spectral matrices was used to analyze the spectral and modal RI patterns upstream of the rotor. Additionally, a time-resolved analysis based on a spatial discrete-Fourier-transform (DFT) was applied to clarify the temporal characteristics of the RI modes and their potential interrelations. The results and a comparison with the previous findings on the annular cascade corroborate a new hypothesis about the basic RI mechanism. This hypothesis implies that instability waves of different wavelengths are generated stochastically in a shear layer resulting from a backflow in the tip clearance region.


2021 ◽  
Vol 263 (3) ◽  
pp. 3748-3755
Author(s):  
Wataru Obayashi ◽  
H. Aono ◽  
T. Tatsukawa ◽  
K. Fujii ◽  
K. Takemi

This paper reports computational analysis of location and strength of sound source of the noise generated by a small axial fan widely used as an air-cooling system. High-fidelity Navier-Stokes simulations with high-resolution compact scheme are conducted with an implicit Large Eddy Simulation (LES) method on a HPC system and the resultant large-scale data confirms existence of unsteady vortex structures and their interactions around the impellers, boss and casing of the fan. To identify location and strength of the sound sources, reduced order model analysis is conducted for the distribution of pressure fluctuations in space and time. Snapshot POD (Proper Orthogonal Decomposition) analysis both in time and in circumferential direction, together with conventional FFT analysis, identifies location and strength of the sound sources. In addition, Convolutional Neural Network (CNN) is attempted, which shows more physical mode decomposition and separates some of the important features shown in the snapshot POD analysis. The study shows that the two data-mining techniques considered here identify possible aerodynamic noise sources of the axial fan clearly in comparison to those in the previous studies.


Author(s):  
Sidharath Sharma ◽  
Jorge García-Tíscar ◽  
John M. Allport ◽  
Martyn L. Jupp ◽  
Ambrose K. Nickson

Ported shroud casing treatment is widely used to delay the onset of surge and thereby enhancing the aerodynamic stability of a centrifugal compressor by recirculating the low momentum fluid in the blade passage. Performance losses associated with the use of recirculation casing treatment are well established in the literature and this is an area of active research. The other, less researched aspect of the casing treatment is its impact on the acoustics of the compressor. This work investigates the impact of ported shroud casing treatment on the acoustic characteristics of the compressor. The flow in two compressor configurations viz. with and without casing treatment operating at the design operating conditions of an iso-speed line are numerically modelled and validated with experimental data from gas stand measurements. The pressure fluctuations calculated as the flow solution are used to compute the spectral signatures at multiple locations to investigate the acoustic phenomenon associated with each configuration. Propagation of the frequency content through the ducts has been estimated with the aid of method of characteristics to enhance the content coming from the compressor. Expected tonal aerodynamic noise sources such as monopole (buzz-saw tones) and dipole (Blade Pass Frequency) are clearly identified in the acoustic spectra of the two configurations. The comparison of two configurations shows higher overall levels and tonal content in the case of a compressor with ported shroud operating at design conditions due to the presence of ‘mid-tones’.


2003 ◽  
Vol 03 (03) ◽  
pp. L259-L264
Author(s):  
Jian-Da Wu ◽  
Mingsian R. Bai

In this paper, a ring silencer design for reducing the noise of axial fans is presented. The noise sources on axial fans are usually caused by the fluctuating pressure distribution on the surface of fan blade. Most of the sources are near the trailing edge of blades or boundary region of blades. The ideation of proposed design is based on the principle of Helmholtz resonator for reducing the noise around the fan. The electro-acoustic analogy of this design is presented and simply discussed. Experimental measurement is carried out to evaluate the proposed design for reducing the axial fan noise. The result of experiment indicated that the ring silencer achieved 17 dB in blade passing frequency and 10 dB in other broadband frequency of power spectrum level.


2021 ◽  
Vol 263 (4) ◽  
pp. 1989-1998
Author(s):  
Alessia Frescura ◽  
Pyoung Jik Lee ◽  
Jeong-Ho Jeong ◽  
Yoshiharu Soeta

The present study aimed to explore relationships between physiological and subjective responses to indoor sounds. Specifically, The electroencephalograms (EEG) responses to neighbour sounds in wooden dwellings were investigated. Listening tests were performed to collect EEG data in distinct acoustics scenarios. Experimental work was carried out in a laboratory with a low background noise level. A series of impact and airborne sounds were presented through loudspeakers and subwoofer, while participants sat comfortably in the simulated living room wearing the EEG headset (B-alert X24 system). The impact sound sources were an adult walking and a child running recorded in a laboratory equipped with different floor configurations. Two airborne sounds (a live conversation and a piece of classical piano music) were digitally filtered to resemble good and poor sound insulation performances of vertical partitions. The experiment consisted of two sessions, namely, the evaluation of individual sounds and the evaluation of the combined noise sources. In the second session, pairs of an impact and an airborne sound were presented. During the listening test, electroencephalography alpha reactivity (α-EEG) and electroencephalography beta reactivity (β-EEG) were monitored. In addition, participants were asked to rate noise annoyance using an 11-point scale.


2017 ◽  
Vol 16 (4-5) ◽  
pp. 418-430 ◽  
Author(s):  
Gert Herold ◽  
Florian Zenger ◽  
Ennes Sarradj

Microphone arrays can be used to detect sound sources on rotating machinery. For this study, experiments with three different axial fans, featuring backward-skewed, unskewed, and forward-skewed blades, were conducted in a standardized fan test chamber. The measured data are processed using the virtual rotating array method. Subsequent application of beamforming and deconvolution in the frequency domain allows the localization and quantification of separate sources, as appear at different regions on the blades. Evaluating broadband spectra of the leading and trailing edges of the blades, phenomena governing the acoustic characteristics of the fans at different operating points are identified. This enables a detailed discussion of the influence of the blade design on the radiated noise.


2002 ◽  
Vol 124 (2) ◽  
pp. 97-105 ◽  
Author(s):  
L. J. Ernst ◽  
C. van ’t Hof ◽  
D. G. Yang ◽  
M. S. Kiasat ◽  
G. Q. Zhang ◽  
...  

Thermo-setting polymers are widely used as underfill materials to improve the reliability of electronic packages. In the design phase, the influence of underfill applications on reliability is often judged through thermal and mechanical simulations, under assumed operating conditions. Because of lacking insight into the mechanical processes due to polymer curing, the impact of processing induced residual stress fields is often neglected. To investigate the evolution of stress and strain fields during the curing process it is important to assume a more appropriate starting point for subsequent process modeling. Furthermore, study of possible damage originating from the fabrication process then comes within reach. To facilitate future analysis of stress and strain fields during the curing process a cure dependent constitutive relation is assumed. An approximate investigation method for the process-dependent mechanical properties, based on Dynamic Mechanic Analysis (DMA), is developed. As an illustration the parameter identification is performed for a selected epoxy resin.


Author(s):  
Esztella Balla ◽  
János Vad

The paper presents comparative aerodynamic and aeroacoustic studies on basic models of blade sections of low-speed, low-Reynolds-number axial fans. The wind tunnel experiments incorporated representative cambered plate and airfoil blade profiles. The aerodynamic measurements revealed that, for low Reynolds numbers, cambered plate blade sections may perform aerodynamically better than airfoil sections. A phased array microphone system, combined with a dipole beamforming and spatial filtering technique, offered a potential for localizing the noise sources in both streamwise and transversal direction. The acoustic studies focused on the profile vortex shedding noise. The results were qualitatively evaluated and compared with the semi-empirical noise prediction model developed by Brooks, Pope, and Marcolini. The measurements are considered as preparation of a dataset contributing to the background for designing high-efficiency, low-noise axial fans operating at low Reynolds number.


Author(s):  
A. Castorrini ◽  
A. Corsini ◽  
A. G. Sheard ◽  
F. Rispoli

The morphing geometry concept finds interesting applications in load reduction and performance increasing for wings and rotor blades in off-design conditions. Here we report a numerical study on the effect that a passive morphing system (made by an elastic-low stiffness surface) has on the sectional load and flowfield, when it is applied to the trailing edge of an axial fan. We obtain the results extracting the section of the fan blade and test it in the 2D cascade, with and without the elastic device, in different operating conditions. Keeping in mind the two-dimensional approximation, it will be possible to observe how the tested device could reduce the load in off-design and high angle of attack conditions, while the same solution could introduce vibrations in design conditions. All the simulations imply the solution of the fluid-structure interaction between the incompressible, turbulent flow and the elastic structure. This solution is obtained using a finite element based, strongly coupled solver, applied to the periodic 2D domain of the section in the cascade.


2019 ◽  
Vol 111 ◽  
pp. 02076 ◽  
Author(s):  
Ralph Krause ◽  
Christian Friebe ◽  
Michael Kerscher ◽  
Christof Puhle

An Acoustic Camera was applied to examine modifications of fan blade designs regarding their noise emissions. A so-called rotational beamforming algorithm allows for the detection of sound sources on the rotating blades by using a virtual rotation of the microphones. Depending upon the frequency different sources could be localized. Both the leading and the trailing edge were modified. This paper shows the performed modifications and tests with the Acoustic Camera. It also presents first results and gives an outlook on future work.


Sign in / Sign up

Export Citation Format

Share Document