Particle Tracking Velocimetry (PTV) Measurement of Abrasive Microparticle Impact Speed and Angle in Both Air-Sand and Slurry Erosion Testers

Author(s):  
Amir Mansouri ◽  
Hadi Arabnejad Khanouki ◽  
Siamack A. Shirazi ◽  
Brenton S. McLaury

Solid particle laden flows are very common in many industries including oil and gas and mining. Repetitive impacts of the solid particles entrained in fluid flow can cause erosion damage in industrial equipment. Among the numerous factors which are known to affect the solid particle erosion rate, the particle impact speed and angle are the most important. It is widely accepted that the erosion rate of material is dependent on the particle speed by a power law Vn, where typically n = 2–3. Therefore, accurate measurements of abrasive particle impact speed and angle are very important in solid particle erosion modeling. In this study, utilizing a Particle Image Velocimetry (PIV) system, particle impact conditions were measured in a direct impinging jet geometry. The measurements were conducted with two different test rigs, for both air-sand and liquid-sand flows. In air-sand testing, two types of solid particles, glass beads and sharp sand particles, were used. The measurements in air-sand tests were carried out using particles with various sizes (75, 150, and 500 μm). Also, submerged testing measurements were performed with 300 μm sand particles. In the test conditions, the Stokes number was relatively high (St = 3000 for air/sand flow, St = 27 for water/sand flow), and abrasive particles were not closely following the fluid streamlines. Therefore, a Particle Tracking Velocimetry (PTV) technique was employed to measure the particle impact speed and its angle with the target surface very near the impact. Furthermore, Computational Fluid Dynamics (CFD) simulations were performed, and the CFD results were compared with the experimental data. It was found that the CFD results are in very good agreement with experimental data.

Author(s):  
Bijan Mohammadi ◽  
AmirSajjad Khoddami

Solid particle erosion is one of the main failure mechanisms of a compressor blade. Thus, characterization of this damage mode is very important in life assessment of the compressor. Since experimental study of solid particle erosion needs special methods and equipment, it is necessary to develop erosion computer models. This study presents a coupled temperature–displacement finite element model to investigate damage of a compressor blade due to multiple solid particles erosion. To decrease the computational cost, a representative volume element technique is introduced to simulate simultaneous impact of multiple particles. Blade has been made of Ti-6Al-4V, a ductile titanium-based alloy, which is impacted by alumina particles. Erosion finite element modeling is assumed as a micro-scale impact problem and Johnson–Cook constitutive equations are used to describe Ti-6Al-4V erosive behavior. In regard to a wide variation range in thermal conditions all over the compressor, it is divided into three parts (first stages, middle stages, and last stages) in which each part has an average temperature. Effective parameters on erosive behavior of the blade alloy, such as impact angle, particles velocity, and particles size are studied in these three temperatures. Results show that middle stages are the most critical sites of the compressor in terms of erosion damage. An exponential relation is observed between erosion rate and particles velocity. The dependency of erosion rate on size of particles at high temperatures is indispensable.


Author(s):  
G. Haider ◽  
A. Asgharpour ◽  
J. Zhang ◽  
S. A. Shirazi

Abstract During production of oil and gas from wells, solid particles such as removed scales or sand may accompany petroleum fluids. These particles present in this multiphase flow can impact inner walls of transportation infrastructure (straight pipelines, elbows, T-junctions, flow meters, and reducers) multiple times. These repeated impacts degrades the inner walls of piping and as a result, reduce wall thickness occur. This is known as solid particle erosion, which is a complex phenomenon involving multiple contributing factors. Prediction of erosion rates and location of maximum erosion are crucial from both operations and safety perspective. Various mechanistic and empirical solid particle erosion models are available in literature for this purpose. The majority of these models require particle impact speed and impact angle to model erosion. Furthermore, due to complex geometric shapes of process equipment, these solid particles can impact and rebound from walls in a random manner with varying speeds and angles. Hence, this rebound characteristic is an important factor in solid particle erosion modeling which cannot be done in a deterministic sense. This challenge has not been addressed in literature satisfactorily. This study uses experimental data to model particle rebound characteristics stochastically. Experimental setup consists of a nozzle and specimen, which are aligned at different angles so particles impact the specimen at various angles. Information regarding particle impact velocities before and after the impacts are obtained through Particle Tracking Velocimetry (PTV) technique. Distributions of normal and tangential components of particle velocities were determined experimentally. Furthermore, spread or dispersion in these velocity components due to randomness is quantified. Finally, based on these experimental observations, a stochastic rebound model based on normal and tangential coefficients of restitutions is developed and Computational Fluid Dynamics (CFD) studies were conducted to validate this model. The model predictions are compared with experimental data for elbows in series. It is found that the rebound model has a great influence on erosion prediction of both first and second elbows especially where subsequent particle impacts are expected.


Author(s):  
Siamack A. Shirazi ◽  
Brenton S. McLaury

Solid particle erosion is a major problem in many industrial applications where solids are entrained in gas and/or liquid flows. For example, erosion of production equipment, well tubing and fittings is a major operating problem that costs the petroleum industry millions of dollars each year. Entrained sand particles in the oil/gas production fluid impinge on the inner surfaces of the pipes, fittings, and valves that result in solid particle erosion. In certain production situations with corrosive fluids, erosion is compounded with corrosion causing severe erosion-corrosion. Even in situations when sand control means are utilized such as gravel packing and sand screens, small sand particles can plug sand screens promoting higher flow velocities through other portions of the screens causing failure and allowing sand production. Erosion can cause severe damage to the piping and equipment wall, resulting in loss of equipment and production downtime. Solid particle erosion is a mechanical process by which material is removed gradually from a solid surface due to repeated impingement of small solid particles on the metal surface. The erosion phenomenon is highly complicated due to the number of parameters affecting the erosion severity, such as production flow rate, sand rate, fluid properties, flow regime, sand properties, sand shape and size, wall material of equipment, and geometry of the equipment. For ductile materials, erosion is caused by localized deformation and cutting action from repeated particle impacts. It is well known that solid particle erosion rates are a strong function of the impacting velocity of particles and also the mass of impacting particles. Predicting solid particle erosion in multiphase flow is a complex task due to existence of different flow patterns. The existence of different flow patterns and sand and liquid holdup in vertical and horizontal pipes means that a unique erosion model has to be developed for each flow regime if the model is to account for the number and velocity of impacting particles. The particle impact velocity is affected by the pipe geometry, carrying fluid properties and velocity, flow pattern, particle size and distribution in the flow. Among different multiphase flow patterns in horizontal and vertical flows, severe erosion damage can occur in annular and slug flows with high gas velocities and low liquid velocities. Although there is a lack of accurate mechanistic models to predict solid particle erosion, there is a need to develop engineering prediction models for multiphase flows. Earlier erosion calculation procedures in multiphase flow were primarily based on empirical data and the accuracy of those “empirical” models was limited to the flow conditions of the experiments. A framework for developing a model has been established for predicting erosion rates of elbows in multiphase flow. The model considers the effects of particle velocities in gas and liquid phases upstream of the elbow. Local fluid velocities in multiphase flow are used to determine representative particle impact velocities. Also based on data representing sand holdup for several flow regimes, the masses of impacting particles are estimated. Erosion experiments are also conducted on elbows in two-inch and three-inch large scale multiphase flow loops with gas, liquid and sand flowing in vertical and horizontal test sections. Based on the experimental data for different flow regimes including slug, wet gas and annular flow a method for improving a previous model is discussed and is being implemented to predict erosion rates in multiphase flow.


Author(s):  
Peyman Zahedi ◽  
Soroor Karimi ◽  
Marzieh Mahdavi ◽  
Brenton S. McLaury ◽  
Siamack A. Shirazi

Solid particle erosion has been recognized as a major concern in the oil and gas production industry. It has been observed that erosion can cause serious and costly damage to equipment and pipelines. Accordingly, different studies have been performed in order to investigate erosion caused by solid particles entrained in the flow. Both experimental and modeling approaches have been used in the past to analyze solid particle erosion under different conditions to be able to mitigate these problems. The goal of this paper is to use a Computational Fluid Dynamic (CFD) erosion model to predict erosion caused by particles flowing in 90 degree and long radius bends. The fluid flow model is coupled with a Lagrangian particle tracking approach. The CFD-based prediction procedure consists of three main steps: flow modeling, particle tracking and erosion calculation. The Reynolds Stress Model (RSM) is used as the turbulence model for all fluid flow simulations. Solid particles are injected from the inlet of the pipe and tracked throughout the bend. The effect of the number of particles released on the predicted maximum erosion magnitude has been investigated. In order to study the grid independency of the solution, erosion is predicted for 5 different grid spacings to accurately predict the flow and erosion rates. In order to assess the quality of the numerical predictions of the erosion rate, experimental data for single-phase (gas) flow with sand in a 3-inch pipe were used. The effects of particle size, fluid velocity, pipe diameter and radius as well as particle rebound model on erosion pattern and magnitude are also investigated. Comparison of these results with experimental erosion data demonstrates good agreement of the erosion trends. It is found that the location of highest erosion for single-phase (gas) flow at low pressure containing sand is around 45° in the elbow. It has been also observed that the 300 μm particles cause approximately two times higher metal loss compared to the 150 μm particles. This higher erosion magnitude is not only caused by the increase in particle momentum but also by the significant increase in particle sharpness for the 300 μm sand. Moreover, simulation results indicate that the increase in gas superficial velocity leads to an increase in the erosion magnitude. According to the results, erosion ratios were reduced exponentially with the increase in pipe diameter at constant flow conditions and particle properties. Furthermore, two available rebound models in the literature were investigated, and simulations illustrate that both methods are in reasonable agreement with experimental data.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 921
Author(s):  
Alicja Krella

Due to the increasing maintenance costs of hydraulic machines related to the damages caused by cavitation erosion and/or erosion of solid particles, as well as in tribological connections, surface protection of these components is very important. Up to now, numerous investigations of resistance of coatings, mainly nitride coatings, such as CrN, TiN, TiCN, (Ti,Cr)N coatings and multilayer TiN/Ti, ZrN/CrN and TN/(Ti,Al)N coatings, produced by physical vapor deposition (PVD) method using different techniques of deposition, such as magnetron sputtering, arc evaporation or ion plating, to cavitation erosion, solid particle erosion and wear have been made. The results of these investigations, degradation processes and main test devices used are presented in this paper. An effect of deposition of mono- and multi-layer PVD coatings on duration of incubation period, cumulative weight loss and erosion rate, as well as on wear rate and coefficient of friction in tribological tests is discussed. It is shown that PVD coating does not always provide extended incubation time and/or improved resistance to mentioned types of damage. The influence of structure, hardness, residence to plastic deformation and stresses in the coatings on erosion and wear resistance is discussed. In the case of cavitation erosion and solid particle erosion, a limit value of the ratio of hardness (H) to Young’s modulus (E) exists at which the best resistance is gained. In the case of tribological tests, the higher the H/E ratio and the lower the coefficient of friction, the lower the wear rate, but there are also many exceptions.


Author(s):  
Soroor Karimi ◽  
Amir Mansouri ◽  
Siamack A. Shirazi ◽  
Brenton S. McLaury

Sand particles entrained in fluids can cause erosive wear and damage to piping materials by impacting their surfaces which could result in failure of the piping system. Several parameters have been determined to affect the erosion behavior and mechanism of solid particle erosion. Some of these parameters include surface material, particle impact speed and angle, and particle size, shape and hardness. However, the effect of particle size on the total erosion rate and local erosion pattern has not been thoroughly investigated. It has been observed that sand particles with various sizes cause different slurry erosion patterns. Changing the particle size alters the Stokes number and consequently produces different erosion patterns and magnitudes. Thus, the effects of particle size on total erosion rate and erosion pattern in a submerged slurry jet are investigated for different impingement angles. Experiments are performed on 316 stainless steel specimens for average particles sizes of 25, 75, 150, and 300 μm. The jet angle is varied to 45, 75 and 90 degrees, and the slurry jet velocity is set to 14 m/s. The erosion pattern of the specimen is examined by obtaining the 3D microscopic profile of the eroded specimen by means of an optical profiler. It is found that the erosion profile changes as the jet angle varies. It is also observed that erosion profile is significantly different for smaller particles as compared to the larger particles. Moreover, these differences become more pronounced as the jet angle decreases. The present work discusses the differences of erosion patterns produced by both large and small particles. Computational Fluid Dynamics (CFD) is also used to study the effect of particle size on particle trajectories, impact speed, and impact angle. Also, CFD results help in explaining the differences observed in the erosion profiles caused by different particle sizes.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 286
Author(s):  
Shoya Mohseni-Mofidi ◽  
Eric Drescher ◽  
Harald Kruggel-Emden ◽  
Matthias Teschner ◽  
Claas Bierwisch

Solid particle erosion inevitably occurs if a gas–solid or liquid–solid mixture is in contact with a surface, e.g., in pneumatic conveyors. Having a good understanding of this complex phenomenon enables one to reduce the maintenance costs in several industrial applications by designing components that have longer lifetimes. In this paper, we propose a methodology to numerically investigate erosion behavior of ductile materials. We employ smoothed particle hydrodynamics that can easily deal with large deformations and fractures as a truly meshless method. In addition, a new contact model was developed in order to robustly handle contacts around sharp corners of the solid particles. The numerical predictions of erosion are compared with experiments for stainless steel AISI 304, showing that we are able to properly predict the erosion behavior as a function of impact angle. We present a powerful tool to conveniently study the effect of important parameters, such as solid particle shapes, which are not simple to study in experiments. Using the methodology, we study the effect of a solid particle shape and conclude that, in addition to angularity, aspect ratio also plays an important role by increasing the probability of the solid particles to rotate after impact. Finally, we are able to extend a widely used erosion model by a term that considers a solid particle shape.


2018 ◽  
Author(s):  
Mazdak Parsi ◽  
Hadi Arabnejad ◽  
Abdelsalam Al-Sarkhi ◽  
Peyman Zahedi ◽  
Ronald E. Vieira ◽  
...  

Author(s):  
Farzin Darihaki ◽  
Elham Fallah Shojaie ◽  
Jun Zhang ◽  
Siamack A. Shirazi

Abstract In internal flows, solid particles carried by the fluid could damage pipelines and fittings. Particles that are entrained in the fluid can cross streamlines and transfer a part of their momentum to the internal surface by impacts and cause local wall material degradation. Over the past decades, a wide range of models is introduced to predict particle erosion which includes empirical models, mechanistic models, and CFD which is currently the state-of-art numerical approach to simulate the erosion process. Multiphase flow under annular flow conditions adds to the complexity of the model. Although with the current computational capabilities transient CFD models are effectively applicable, this type of transient multiphase approach is not practical yet for engineering prediction of erosion especially for the large diameter applications with huge computational domains. Therefore, the presented combined approach could be utilized to obtain erosion rates for large diameter cases. Thus, an approach combining CFD and mechanistic multiphase models characterizing annular flow is developed to predict solid particle erosion. Different factors including film thickness in pipes and fittings which are affecting erosion under gas-dominated multiphase flow conditions are investigated. The results from the current approach are compared to experimental data and transient CFD simulations for annular flow in elbows showing a very good agreement with both.


Sign in / Sign up

Export Citation Format

Share Document