Parametric Analysis of Erosion in 90 Degree and Long Radius Bends

Author(s):  
Peyman Zahedi ◽  
Soroor Karimi ◽  
Marzieh Mahdavi ◽  
Brenton S. McLaury ◽  
Siamack A. Shirazi

Solid particle erosion has been recognized as a major concern in the oil and gas production industry. It has been observed that erosion can cause serious and costly damage to equipment and pipelines. Accordingly, different studies have been performed in order to investigate erosion caused by solid particles entrained in the flow. Both experimental and modeling approaches have been used in the past to analyze solid particle erosion under different conditions to be able to mitigate these problems. The goal of this paper is to use a Computational Fluid Dynamic (CFD) erosion model to predict erosion caused by particles flowing in 90 degree and long radius bends. The fluid flow model is coupled with a Lagrangian particle tracking approach. The CFD-based prediction procedure consists of three main steps: flow modeling, particle tracking and erosion calculation. The Reynolds Stress Model (RSM) is used as the turbulence model for all fluid flow simulations. Solid particles are injected from the inlet of the pipe and tracked throughout the bend. The effect of the number of particles released on the predicted maximum erosion magnitude has been investigated. In order to study the grid independency of the solution, erosion is predicted for 5 different grid spacings to accurately predict the flow and erosion rates. In order to assess the quality of the numerical predictions of the erosion rate, experimental data for single-phase (gas) flow with sand in a 3-inch pipe were used. The effects of particle size, fluid velocity, pipe diameter and radius as well as particle rebound model on erosion pattern and magnitude are also investigated. Comparison of these results with experimental erosion data demonstrates good agreement of the erosion trends. It is found that the location of highest erosion for single-phase (gas) flow at low pressure containing sand is around 45° in the elbow. It has been also observed that the 300 μm particles cause approximately two times higher metal loss compared to the 150 μm particles. This higher erosion magnitude is not only caused by the increase in particle momentum but also by the significant increase in particle sharpness for the 300 μm sand. Moreover, simulation results indicate that the increase in gas superficial velocity leads to an increase in the erosion magnitude. According to the results, erosion ratios were reduced exponentially with the increase in pipe diameter at constant flow conditions and particle properties. Furthermore, two available rebound models in the literature were investigated, and simulations illustrate that both methods are in reasonable agreement with experimental data.

Author(s):  
G. Haider ◽  
A. Asgharpour ◽  
J. Zhang ◽  
S. A. Shirazi

Abstract During production of oil and gas from wells, solid particles such as removed scales or sand may accompany petroleum fluids. These particles present in this multiphase flow can impact inner walls of transportation infrastructure (straight pipelines, elbows, T-junctions, flow meters, and reducers) multiple times. These repeated impacts degrades the inner walls of piping and as a result, reduce wall thickness occur. This is known as solid particle erosion, which is a complex phenomenon involving multiple contributing factors. Prediction of erosion rates and location of maximum erosion are crucial from both operations and safety perspective. Various mechanistic and empirical solid particle erosion models are available in literature for this purpose. The majority of these models require particle impact speed and impact angle to model erosion. Furthermore, due to complex geometric shapes of process equipment, these solid particles can impact and rebound from walls in a random manner with varying speeds and angles. Hence, this rebound characteristic is an important factor in solid particle erosion modeling which cannot be done in a deterministic sense. This challenge has not been addressed in literature satisfactorily. This study uses experimental data to model particle rebound characteristics stochastically. Experimental setup consists of a nozzle and specimen, which are aligned at different angles so particles impact the specimen at various angles. Information regarding particle impact velocities before and after the impacts are obtained through Particle Tracking Velocimetry (PTV) technique. Distributions of normal and tangential components of particle velocities were determined experimentally. Furthermore, spread or dispersion in these velocity components due to randomness is quantified. Finally, based on these experimental observations, a stochastic rebound model based on normal and tangential coefficients of restitutions is developed and Computational Fluid Dynamics (CFD) studies were conducted to validate this model. The model predictions are compared with experimental data for elbows in series. It is found that the rebound model has a great influence on erosion prediction of both first and second elbows especially where subsequent particle impacts are expected.


Author(s):  
Ri Zhang ◽  
Haixiao Liu

Solid particle erosion in piping systems is a serious concern of integrity management in the oil and gas production, which has been widely predicted by the numerical simulation method. In the present work, every step of the comprehensive procedure is verified when applied to predicting the bend erosion for gas flow, and improvements are made by comparing different computational models. Firstly, five turbulent models are implemented to model the flow field in a 90 degree bend for gas flow and examined by the static pressure and velocity profile measured in experiments. Secondly, the particle velocities calculated by fully coupling and one-way coupling are compared with experimental data. Finally, based on the knowledge of flow modeling and particle tracking, four classic erosion equations are introduced to calculate the penetration rates in a 90 degree bend. By comparing with the experimental data available in the literature, it indicates that the k–ε model is the most accurate and effective turbulent model for gas pipe flow; the fully coupling makes the simulation of particle motion closer to measured data; and the Grant and Tabakoff equation presents better performance than other equations.


2021 ◽  
pp. 79-120

Abstract This chapter covers common types of erosion, including droplet, slurry, cavitation, liquid impingement, gas flow, and solid particle erosion, and major types of wear, including abrasive, adhesive, lubricated, rolling, and impact wear. It also covers special cases such as galling, fretting, scuffing, and spalling and introduces the concepts of tribocorrosion and biotribology.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 921
Author(s):  
Alicja Krella

Due to the increasing maintenance costs of hydraulic machines related to the damages caused by cavitation erosion and/or erosion of solid particles, as well as in tribological connections, surface protection of these components is very important. Up to now, numerous investigations of resistance of coatings, mainly nitride coatings, such as CrN, TiN, TiCN, (Ti,Cr)N coatings and multilayer TiN/Ti, ZrN/CrN and TN/(Ti,Al)N coatings, produced by physical vapor deposition (PVD) method using different techniques of deposition, such as magnetron sputtering, arc evaporation or ion plating, to cavitation erosion, solid particle erosion and wear have been made. The results of these investigations, degradation processes and main test devices used are presented in this paper. An effect of deposition of mono- and multi-layer PVD coatings on duration of incubation period, cumulative weight loss and erosion rate, as well as on wear rate and coefficient of friction in tribological tests is discussed. It is shown that PVD coating does not always provide extended incubation time and/or improved resistance to mentioned types of damage. The influence of structure, hardness, residence to plastic deformation and stresses in the coatings on erosion and wear resistance is discussed. In the case of cavitation erosion and solid particle erosion, a limit value of the ratio of hardness (H) to Young’s modulus (E) exists at which the best resistance is gained. In the case of tribological tests, the higher the H/E ratio and the lower the coefficient of friction, the lower the wear rate, but there are also many exceptions.


Author(s):  
Bijan Mohammadi ◽  
AmirSajjad Khoddami

Solid particle erosion is one of the main failure mechanisms of a compressor blade. Thus, characterization of this damage mode is very important in life assessment of the compressor. Since experimental study of solid particle erosion needs special methods and equipment, it is necessary to develop erosion computer models. This study presents a coupled temperature–displacement finite element model to investigate damage of a compressor blade due to multiple solid particles erosion. To decrease the computational cost, a representative volume element technique is introduced to simulate simultaneous impact of multiple particles. Blade has been made of Ti-6Al-4V, a ductile titanium-based alloy, which is impacted by alumina particles. Erosion finite element modeling is assumed as a micro-scale impact problem and Johnson–Cook constitutive equations are used to describe Ti-6Al-4V erosive behavior. In regard to a wide variation range in thermal conditions all over the compressor, it is divided into three parts (first stages, middle stages, and last stages) in which each part has an average temperature. Effective parameters on erosive behavior of the blade alloy, such as impact angle, particles velocity, and particles size are studied in these three temperatures. Results show that middle stages are the most critical sites of the compressor in terms of erosion damage. An exponential relation is observed between erosion rate and particles velocity. The dependency of erosion rate on size of particles at high temperatures is indispensable.


Author(s):  
Amir Mansouri ◽  
Hadi Arabnejad Khanouki ◽  
Siamack A. Shirazi ◽  
Brenton S. McLaury

Solid particle laden flows are very common in many industries including oil and gas and mining. Repetitive impacts of the solid particles entrained in fluid flow can cause erosion damage in industrial equipment. Among the numerous factors which are known to affect the solid particle erosion rate, the particle impact speed and angle are the most important. It is widely accepted that the erosion rate of material is dependent on the particle speed by a power law Vn, where typically n = 2–3. Therefore, accurate measurements of abrasive particle impact speed and angle are very important in solid particle erosion modeling. In this study, utilizing a Particle Image Velocimetry (PIV) system, particle impact conditions were measured in a direct impinging jet geometry. The measurements were conducted with two different test rigs, for both air-sand and liquid-sand flows. In air-sand testing, two types of solid particles, glass beads and sharp sand particles, were used. The measurements in air-sand tests were carried out using particles with various sizes (75, 150, and 500 μm). Also, submerged testing measurements were performed with 300 μm sand particles. In the test conditions, the Stokes number was relatively high (St = 3000 for air/sand flow, St = 27 for water/sand flow), and abrasive particles were not closely following the fluid streamlines. Therefore, a Particle Tracking Velocimetry (PTV) technique was employed to measure the particle impact speed and its angle with the target surface very near the impact. Furthermore, Computational Fluid Dynamics (CFD) simulations were performed, and the CFD results were compared with the experimental data. It was found that the CFD results are in very good agreement with experimental data.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 286
Author(s):  
Shoya Mohseni-Mofidi ◽  
Eric Drescher ◽  
Harald Kruggel-Emden ◽  
Matthias Teschner ◽  
Claas Bierwisch

Solid particle erosion inevitably occurs if a gas–solid or liquid–solid mixture is in contact with a surface, e.g., in pneumatic conveyors. Having a good understanding of this complex phenomenon enables one to reduce the maintenance costs in several industrial applications by designing components that have longer lifetimes. In this paper, we propose a methodology to numerically investigate erosion behavior of ductile materials. We employ smoothed particle hydrodynamics that can easily deal with large deformations and fractures as a truly meshless method. In addition, a new contact model was developed in order to robustly handle contacts around sharp corners of the solid particles. The numerical predictions of erosion are compared with experiments for stainless steel AISI 304, showing that we are able to properly predict the erosion behavior as a function of impact angle. We present a powerful tool to conveniently study the effect of important parameters, such as solid particle shapes, which are not simple to study in experiments. Using the methodology, we study the effect of a solid particle shape and conclude that, in addition to angularity, aspect ratio also plays an important role by increasing the probability of the solid particles to rotate after impact. Finally, we are able to extend a widely used erosion model by a term that considers a solid particle shape.


Author(s):  
Farzin Darihaki ◽  
Elham Fallah Shojaie ◽  
Jun Zhang ◽  
Siamack A. Shirazi

Abstract In internal flows, solid particles carried by the fluid could damage pipelines and fittings. Particles that are entrained in the fluid can cross streamlines and transfer a part of their momentum to the internal surface by impacts and cause local wall material degradation. Over the past decades, a wide range of models is introduced to predict particle erosion which includes empirical models, mechanistic models, and CFD which is currently the state-of-art numerical approach to simulate the erosion process. Multiphase flow under annular flow conditions adds to the complexity of the model. Although with the current computational capabilities transient CFD models are effectively applicable, this type of transient multiphase approach is not practical yet for engineering prediction of erosion especially for the large diameter applications with huge computational domains. Therefore, the presented combined approach could be utilized to obtain erosion rates for large diameter cases. Thus, an approach combining CFD and mechanistic multiphase models characterizing annular flow is developed to predict solid particle erosion. Different factors including film thickness in pipes and fittings which are affecting erosion under gas-dominated multiphase flow conditions are investigated. The results from the current approach are compared to experimental data and transient CFD simulations for annular flow in elbows showing a very good agreement with both.


2021 ◽  
Author(s):  
Yeshwanthraj Rajkumar ◽  
Soroor Karimi ◽  
Siamack A. Shirazi

Abstract The entrainment of solid particles within the produced fluids can cause solid particle erosion by impacting the piping of production and transportation facilities. Liquid dominated flows are commonly encountered in deep water subsea pipelines while producing oil and gas fluids. It is of great importance to predict the erosion pattern and magnitude for elbows in series in liquid-solid flows as in the oil and gas productions, liquids tends to produce more solid particles compared to gas-solid flows. In the current work, erosion of elbows in series for different particle sizes are investigated by using computational fluid dynamics (CFD) and compare the erosion pattern results with the results of paint removal experiments using a 76.2 mm diameter acrylic elbows, qualitatively. CFD simulations have been performed to study the particle size effects on erosion using Reynolds stress turbulence model (RSM) and Low-Reynolds number K-ε model. Grid refinement studies have been performed and particles are rebounded at the particle radius to accurately examine the effects of particle sizes on solid particle erosion of these elbows. The CFD results shows that significant erosion is observed at the inner wall of the first elbow for larger particles, and the maximum erosion can be seen towards the end of the second elbow for 300 μm particle size.


2013 ◽  
Vol 773 ◽  
pp. 19-24
Author(s):  
Li Zhang ◽  
Yu Ting Zheng

On the base of the original geometry of the outlet channel of nozzle box, four different geometry of the outlet channel were constructed. Using the Euler-Lagrange method, the flow characteristics of solid particles in the five different channels were numerical simulated. The particle trajectories and the erosion regions were discussed. The analysis showed that the different geometry of the outlet channel would effect the particle erosion in the channel and the stator of the control stage.


Sign in / Sign up

Export Citation Format

Share Document