Comparison of Experimental, Thermoelastohydrodynamic (TEHD) and Isothermal, Non-Deforming Computational Fluid Dynamics (CFD) Results for Thrust Bearings

Author(s):  
Xin Deng ◽  
Cori Watson ◽  
Minhui He ◽  
Houston Wood ◽  
Roger Fittro

Bearings are machine elements that allow components to move with respect to each other. A thrust bearing is a particular type of rotary bearing permitting rotation between parts but designed to support a predominately axial load. Oil-lubricated bearings are widely used in high speed rotating machines such as those found in the aerospace and automotive industries. With the increase of velocity, the lubrication regime will go through boundary lubrication, mixed lubrication, and hydrodynamic lubrication (full film). In this paper, the analysis was in the hydrodynamic lubrication region. THRUST is used to predict the steady-state operating characteristics of oil-lubricated thrust bearings. As a thermoelastohydrodynamic prediction tool, THRUST assumes a 3D turbulence model, 3D energy equation, and 2D Reynolds equation. Turbulence is included by obtaining average values of eddy momentum flux (Reynolds stress) and averaging the influence down to a 2D Reynolds equation. Convergence is achieved by iterating on the pad tilt angles and pivot film thickness until the integrated pressure matches the load applied to the pad. Despite the multiple experimental, CFD, and TEHD studies of thrust bearings that have been performed to date, no validation has yet been performed to confirm the accuracy of TEHD methods in modeling the performance of thrust bearings by both experimental and advanced computational means simultaneously. This study addresses this need by comparing TEHD and CFD simulation results of film thickness, temperature, power loss, and pressure in thrust bearings taken from the literature at multiple speeds and loads with results from experimental data. Starting from the case of the lowest speed and load, it was verified that this case is indeed laminar and with negligible thermal and elastic effects. Four cases were run in THRUST, a TEHD solver, combining thermal and deformation in each rotational speed and load combination. Additionally, a CFD study was performed in ANSYS CFX with the assumptions of isothermal, non-deforming. The average viscosity from THRUST was used in CFD to follow the effects of the isoviscous assumption. Then, the experimental, TEHD and CFD results were compared at each case. Experimental, TEHD, and CFD results show acceptable agreement when turbulence is negligible.

Author(s):  
C. H. Venner

When numerical and experimental results are compared to validate elasto-hydrodynamic lubrication (EHL) models, it is of utmost importance that grid-converged results are used. In particular at low speeds and high loads, solutions obtained using grids that are not sufficiently dense will exhibit an artificial trend that does not represent the behaviour of the continuous modelling equations. As it coincides with a trend observed in experiments this may lead to the erroneous conclusion that the theoretical model on which the numerical simulations are based is accurate. This risk is illustrated in detail. It is further shown that EHL models based on the Reynolds equation in a steady state circular contact predicts a positive film thickness as long as the grid used in the calculations is sufficiently dense. This has significant implications for the validity of results obtained using mixed lubrication models based on a Reynolds model and a film thickness threshold.


Using the two-space homogenization method we derive an averaged Reynolds equation that is correct to O (< H 6 > — < H 3 > 2 ), where H is the total film thickness and the angle brackets denote a spatial average. Applications of this mean Reynolds equation to a squeeze-film bearing with a sinusoidal or an isotropic surface roughness are discussed.


2013 ◽  
Vol 365-366 ◽  
pp. 304-308
Author(s):  
Lei Wang

An analysis is conducted and solutions are provided for the dynamic performance of high speed hybrid thrust bearing. By adopting bulk flow theory, the turbulent Reynolds equation is solved numerically with the different orifice diameter and supply pressure. The results show that increasing supply pressure can significantly improve the bearing stiffness and damping, while the orifice diameters make a different effect on the bearing stiffness and damping.


2021 ◽  
Vol 26 (3) ◽  
pp. 44-61
Author(s):  
M. El Gadari ◽  
M. Hajjam

Abstract Since the 1960s, all studies have assumed that a film thickness “h” provides a unique pressure field “p” by resolving the Reynolds equation. However, it is relevant to investigate the film thickness unicity under a given hydrodynamic pressure within the inverse theory. This paper presents a new approach to deduce from an initial film thickness a widespread number of thicknesses providing the same hydrodynamic pressure under a specific condition of gradient pressure. For this purpose, three steps were presented: 1) computing the hydrodynamic pressure from an initial film thickness by resolving the Reynolds equation with Gümbel’s cavitation model, 2) using a new algorithm to generate a second film thickness, 3) comparing and validating the hydrodynamic pressure produced by both thicknesses with the modified Reynolds equation. Throughout three surface finishes: the macro-shaped, micro-textured, and rough surfaces, it has been demonstrated that under a specific hydrodynamic pressure gradient, several film thicknesses could generate the same pressure field with a slight difference by considering cavitation. Besides, this paper confirms also that with different ratios of the averaged film thickness to the root mean square (RMS) similar hydrodynamic pressure could be generated, thereby the deficiency of this ratio to define the lubrication regime as commonly known from Patir and Cheng theory.


2016 ◽  
Vol 68 (6) ◽  
pp. 647-657 ◽  
Author(s):  
Kaiyue Li ◽  
Guoding Chen ◽  
Deng Liu

Purpose The analysis of lubricating properties and efficiency is important for aviation high-speed gear. So far, the project of lubricating properties and efficiency are processing under the condition of a given lubricating state, which is still depending on practical experience. This paper aims to mostly focus on the analysis of given lubricating state but lost sight of the relevance of lubrication parameters and lubricating state, which not only makes the analysis of aviation high-speed gear transmission and efficiency fail to trace to practical situation but also has an adverse effect on the reliance and validity of the project. Design/methodology/approach Based on this, the numerical model of spraying oil and oil film spreading is established, and the quantitative relationship between spray lubrication parameters and spreading characteristics of oil film is studied. According to the geometric and mechanical conditions of meshing points and taking the influence of rich-oil/starved-oil lubrication and roughness of teeth surface into consideration, corrected film thickness under condition of elasto-hydrodynamic lubrication and lubricating state of mesh points are analyzed. On this basis, power consumption and efficiency of gear transmission are also calculated by figuring out the solid friction and oil friction separately. Findings Through the research of this thesis, the effect of friction power consumption and efficiency with lubrication parameters is discussed. The effect of lubrication parameters on friction power consumption and efficiency of gear is complex. With the increase of spreading film thickness and film length, the frictional power consumption is less and the efficiency is higher. Originality/value This work provides a systematic technological approach to lubrication design and efficiency calculation of aviation high-speed gear transmission, which has remarkable engineering significance for the accurate lubrication design of the aviation mechanical parts.


Author(s):  
Jianbo Zhang ◽  
Chunxiao Jiao ◽  
Donglin Zou ◽  
Na Ta ◽  
Zhushi Rao

The solution of Reynolds equation and computational fluid dynamics are widely employed for the lubrication performance analysis of aerostatic thrust bearing. However, the solution of Reynolds equation may be inaccurate and cannot present detailed performance near orifice, while computational fluid dynamics method has low computational efficiency with time consumption in mesh generation and solving Navier–Stokes equations. In order to overcome the drawbacks of Reynolds equation and computational fluid dynamics, based on the method of separation of variables, a semianalytical method is developed for describing the characteristics of aerostatic bearings available. The method of separation of variables considering the initial and viscous effect is more accurate than the Reynolds equation and can present detailed performance near orifice in the aerostatic thrust bearings, while method of separation of variables has great computational efficiency compared to computational fluid dynamics. Meanwhile, the pressure distribution calculated by method of separation of variables is compared to the published experimental data and the results obtained by computational fluid dynamics. The comparative results indicate validity of the method. Furthermore, the influences of flow and geometry parameters, such as supply pressure, orifice diameter, film thickness, and bearing radius, on the characteristics of aerostatic thrust bearings with single orifice are studied. The results show that there exists pressure depression phenomenon near orifice. The depression phenomenon is strengthened with increase of film thickness and supply pressure and decrease of orifice diameter and bearing radius, while the maximum speed increases with strengthening of pressure depression due to decrease of minimum local pressure near orifice. Moreover, the bearing capacity increases with increase of supply pressure, orifice diameter, and bearing radius and decreases with increase of film thickness, while mass flow rate increases with supply pressure, orifice diameter, and film thickness and it is not sensitive to bearing radius.


2001 ◽  
Vol 124 (1) ◽  
pp. 203-211 ◽  
Author(s):  
J. K. Martin ◽  
D. W. Parkins

Principles of a continuously adjustable hydrodynamic bearing are described together with an analysis model for studying its theoretical performance. The model included an expanded form of the governing Reynolds equation which took account of non-uniform variations in the fluid film thickness. A solution procedure was devised whereby for a given set of adjustment conditions, simultaneously converged fields of fluid film thickness, temperature, viscosity and pressure would result, together with oil film forces. A wide range of operating characteristics were studied with results predicting advantages and benefits over conventional hydrodynamic bearings.


1995 ◽  
Vol 117 (3) ◽  
pp. 534-539 ◽  
Author(s):  
Minoru Yamamoto ◽  
Haruo Mori ◽  
Tsuneo Yoshikawa

An analytical model is presented to obtain the film thickness profile of an externally pressurized gas lubricated piston ring which is applied to an air compressor. In order to examine the effects of the ends of the ring, the analysis is based on the two-dimensional, transient, compressible Reynolds equation accounting for the ring deflection and the equilibrium condition of the ring in the clearance space between the piston and the cylinder bore. In the numerical simulation, the Reynolds equation is discretized by using a cell method. The resulting nonlinear system of equations is solved by the Newton-Raphson iteration method. The obtained results show that the piston ring keeps the lubricating film thickness within a narrow range of the design clearance over the entire circumferential area throughout one cycle of compressor operation.


2014 ◽  
Vol 1061-1062 ◽  
pp. 653-657
Author(s):  
Gang Liu

The deformation of marine water-lubricated stern bearing which the lining materials are polymer materials is much bigger than the bearing built with metal materials. So, in order to improve the calculate accuracy of elastic hydrodynamic, it is necessary to consider the deformation of the lining. Both pressure and thickness distributions of water film which contrasts with the hydrodynamic lubrication are presented by the Reynolds equation, and combining with the elastic deformation of the stern bearing solved by using the finite element method theory. The result shows that the stern bearing water film pressure of elastic hydrodynamic lubrication is lower than that of hydrodynamic lubrication, while the water film thickness is larger.


2007 ◽  
Vol 129 (4) ◽  
pp. 963-967 ◽  
Author(s):  
Jiang Li ◽  
Haosheng Chen

A discrete probability distribution function is used to represent the squared transverse roughness effect in a modified Reynolds equation, and the Reynolds equation is used to calculate the hydrodynamic lubrication in a slider-disk interface compared to the CFD method. When the roughness height is below 1% of the film thickness, the results acquired by the two methods are the same and the surface roughness does not show obvious effect on the lubrication results compared to that on the smooth surface. The load capacity and friction force increase as the roughness height increases when the roughness height exceeds 1% of the film thickness. Moreover, the forces acquired by Reynolds equations are smaller than those acquired by CFD, and the difference between them exceeds 10% when the roughness height is higher than 10% of the film thickness. Sidewall effect is considered to be the main reason for the difference, and the Reynolds equation is believed not suitable for calculating the effect of the squared transverse roughness in the hydrodynamic lubrication.


Sign in / Sign up

Export Citation Format

Share Document