Blood Flow and Mixing Analysis in Split-and-Recombine Micromixer With Offset Fluid Inlets

Author(s):  
Afzal Husain ◽  
Farhan A. Khan ◽  
Nabeel Z. Al-Rawahi ◽  
Abdus Samad

In this study, a variant of 3D split-and-recombine micromixer is proposed for enhanced micromixing. The mixing analysis was carried out for water and blood flows through the three-dimensional numerical model. The blood flow was modeled using several non-Newtonian fluid models existed in the literature and performance was compared for mixing index. Further, the performance of the proposed micromixer was compared with several other designs of micromixers available in the open literature for a wide range of Reynolds numbers covering diffusion, transient, and advection-dominated flow regimes. Finally, Carreau-Yasuda model was used to carry out parametric analysis of the proposed micromixer for mixing index.

2013 ◽  
Vol 21 (5-6) ◽  
pp. 147-153 ◽  
Author(s):  
Iqbal Husain ◽  
Fotini Labropulu ◽  
Chris Langdon ◽  
Justin Schwark

AbstractMathematical modeling of blood flows in the arteries is an important and challenging problem. This study compares several non-Newtonian blood models with the Newtonian model in simulating pulsatile blood flow through two three-dimensional models of an arterial stenosis and an aneurysm. Four non-Newtonian blood models, namely the Power Law, the Casson, the Carreau, and the Generalized Power Law, as well as the Newtonian model of blood viscosity, are used to investigate the flow effects induced by these different blood constitutive equations. The aim of this study is three-fold: firstly, to investigate the variation in wall shear stress in an artery with a stenosis or aneurysm at different flow rates and degrees of severity; secondly, to compare the various blood models and hence quantify the differences between the models and judge their significance; and lastly, to determine whether the use of the Newtonian blood model is appropriate over a wide range of shear rates.


2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


1998 ◽  
Vol 85 (6) ◽  
pp. 2025-2032 ◽  
Author(s):  
S. Egginton ◽  
O. Hudlická ◽  
M. D. Brown ◽  
H. Walter ◽  
J. B. Weiss ◽  
...  

Rat extensor digitorum longus muscles were overloaded by stretch after removal of the synergist tibialis anterior muscle to determine the relationship between capillary growth, muscle blood flow, and presence of growth factors. After 2 wk, sarcomere length increased from 2.4 to 2.9 μm. Capillary-to-fiber ratio, estimated from alkaline phosphatase-stained frozen sections, was increased by 33% ( P < 0.0001) and 60% ( P < 0.01), compared with control muscles (1.44 ± 0.06) after 2 and 8 wk, respectively. At 2 wk, the increased capillary-to-fiber ratio was not associated with any changes in mRNA for basic fibroblast growth factor (FGF-2) or its protein distribution. FGF-2 immunoreactivity was present in nerves and large blood vessels but was negative in capillaries, whereas the activity of low-molecular endothelial-cell-stimulating angiogenic factor (ESAF) was 50% higher in stretched muscles. Muscle blood flows measured by radiolabeled microspheres during contractions were not significantly different after 2 or 8 wk (132 ± 37 and 177 ± 22 ml ⋅ min−1 ⋅ 100 g−1, respectively) from weight-matched controls (156 ± 12 and 150 ± 10 ml ⋅ min−1 ⋅ 100 g−1, respectively). Resistance to fatigue during 5-min isometric contractions (final/peak tension × 100) was similar in 2-wk overloaded and contralateral muscles (85 vs. 80%) and enhanced after 8 wk to 92%, compared with 77% in contralateral muscles and 67% in controls. We conclude that increased blood flow cannot be responsible for initiating expansion of the capillary bed, nor does it explain the reduced fatigue within overloaded muscles. However, stretch can present a mechanical stimulus to capillary growth, acting either directly on the capillary abluminal surface or by upregulating ESAF, but not FGF-2, in the extracellular matrix.


2016 ◽  
Author(s):  
Guilherme Feitosa Rosetti ◽  
Guilherme Vaz ◽  
André Luís Condino Fujarra

The cylinder flow is a canonical problem for Computational Fluid Dynamics (CFD), as it can display several of the most relevant issues for a wide class of flows, such as boundary layer separation, vortex shedding, flow instabilities, laminar-turbulent transition and others. Several applications also display these features justifying the amount of energy invested in studying this problem in a wide range of Reynolds numbers. The Unsteady Reynolds Averaged Navier Stokes (URANS) equations combined with simplifying assumptions for turbulence have been shown inappropriate for the captive cylinder flow in an important range of Reynolds numbers. For that reason, recent improvements in turbulence modeling has been one of the most important lines of research within that issue, aiming at better prediction of flow and loads, mainly targeting the three-dimensional effects and laminar-turbulent transition, which are so important for blunt bodies. In contrast, a much smaller amount of work is observed concerning the investigation of turbulent effects when the cylinder moves with driven or free motions. Evidently, larger understanding of the contribution of turbulence in those situations can lead to more precise mathematical and numerical modeling of the flow around a moving cylinder. In this paper, we present CFD calculations in a range of moderate Reynolds numbers with different turbulence models and considering a cylinder in captive condition, in driven and in free motions. The results corroborate an intuitive notion that the inertial effects indeed play very important role in determining loads and motions. The flow also seems to adapt to the motions in such a way that vortices are more correlated and less influenced by turbulence effects. Due to good comparison of the numerical and experimental results for the moving-cylinder cases, it is observed that the choice of turbulence model for driven and free motions calculations is markedly less decisive than for the captive cylinder case.


Author(s):  
Benigno J. Lazaro ◽  
Ezequiel Gonzalez ◽  
Jorge Parra ◽  
David Cadrecha Robles

Abstract In spite of advances in CFD prediction tools, the current design of outlet guide vane (OGV) stages for flow recovery downstream from low pressure turbines (LPT) still has to face significant flow entrance uncertainties. To ensure proper response of modern, high efficiency OGV’s, the sensitivity in the aerodynamic response of the vanes to both different levels of inlet turbulence and off-design incidence must be analyzed. To that end, a systematic experimental investigation of a current design LPT OGV airfoil has been undertaken in a low-speed linear cascade. Wall pressure distributions as well as high-resolution total pressure drop and LDV measurements have been used to determine the flow response. The experimental facility includes different boundary suction strategies for proper control of flow periodicity and endwall effects at significant off-design incidences. In addition, different inlet grids to promote an entrance flow having controlled isotropic background turbulence are included. The experimental flow response of the OGV airfoil is presented for a wide range of Reynolds numbers and different values of the inlet flow incidence and turbulence properties. Both at design and off-design incidences, different flow regimes and performance degradation mechanisms are discussed. In addition, the effect of inlet turbulence at close to design incidence is discussed, with the experimental evidence suggesting that its effect can be described by defining a properly scaled Reynolds number. The ability of CFD simulations based on currently available RANS transition models to describe the flow in high efficiency turbine OGV airfoils is finally explored.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Bayode E. Owolabi ◽  
David J. C. Dennis ◽  
Robert J. Poole

In this study, we examine the development length requirements for laminar Couette–Poiseuille flows in a two-dimensional (2D) channel as well as in the three-dimensional (3D) case of flow through a square duct, using a combination of numerical and experimental approaches. The parameter space investigated covers wall to bulk velocity ratios, r, spanning from 0 (purely pressure-driven flow) to 2 (purely wall driven-flow; 4 in the case of a square duct) and a wide range of Reynolds numbers (Re). The results indicate an increase in the development length (L) with r. Consistent with the findings of Durst et al. (2005, “The Development Lengths of Laminar Pipe and Channel Flows,” ASME J. Fluids Eng., 127(6), pp. 1154–1160), L was observed to be of the order of the channel height in the limit as Re→0, irrespective of the condition at the inlet. This, however, changes at high Reynolds numbers, with L increasing linearly with Re. In all the cases considered, a uniform velocity profile at the inlet was found to result in longer entry lengths than in a flow developing from a parabolic inlet profile. We show that this inlet effect becomes less important as the limit of purely wall-driven flow is approached. Finally, we develop correlations for predicting L in these flows and, for the first time, also present laser Doppler velocimetry (LDV) measurements of the developing as well as fully-developed velocity profiles, and observe good agreement between experiment, analytical solution, and numerical simulation results in the 3D case.


2011 ◽  
Vol 57 (205) ◽  
pp. 811-816 ◽  
Author(s):  
Emilie Zermatten ◽  
Sophia Haussener ◽  
Martin Schneebeli ◽  
Aldo Steinfeld

AbstractA tomography-based methodology for the mass transport characterization of snow is presented. Five samples, characteristic for a wide range of seasonal snow, are considered. Their three-dimensional (3-D) geometrical representations are obtained by micro-computed tomography and used in direct pore-level simulations to numerically solve the governing mass and momentum conservation equations, allowing for the determination of their effective permeability and Dupuit–Forchheimer coefficient. The extension to the Dupuit–coefficient is useful near the snow surface, where Reynolds numbers higher than unity can appear. Simplified semi-empirical models of porous media are also examined. The methodology presented allows for the determination of snow’s effective mass transport properties, which are strongly dependent on the snow microstructure and morphology. These effective properties can, in turn, readily be used in snowpack volume-averaged (continuum) models such as strongly layered samples with macroscopically anisotropic properties.


2003 ◽  
Author(s):  
Farshid Bondar ◽  
Francine Battaglia

The passive mixing of water and alcohol, as two fluids with different densities, is carried out computationally in three-dimensional microchannels. Four designs of microchannels are considered to investigate the efficiency of mixing for Reynolds numbers ranging between 6 and 96. In a straight-type microchannel, mixing is very poor. In a square-wave-type microchannel, mixing is marginally better than the straight one. Mixing in the serpentine-type and twisted-type microchannels develops considerable better than the first two microchannels, especially at higher Reynolds numbers. However, in the twisted microchannel, the mixing index is substantially larger compared to the serpentine microchannel for the Reynolds number of 35. The higher mixing index implies the occurrence of spatially chaotic flows with a higher degree of chaos compared to the case of the serpentine microchannel. The results are compared quantitatively and qualitatively in Eulerian and Lagrangian frameworks and a correlation between Lagrangian chaos and Eulerian chaos is concluded.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Vladimir Viktorov ◽  
Carmen Visconte ◽  
Md Readul Mahmud

A novel passive micromixer, denoted as the Y-Y mixer, based on split-and-recombine (SAR) principle is proposed and studied both experimentally and numerically over Reynolds numbers ranging from 1 to 100. Two species are supplied to a prototype via a Y inlet, and flow through four identical elements repeated in series; the width of the mixing channel varies from 0.4 to 0.6 mm, while depth is 0.4 mm. An image analysis technique was used to evaluate mixture homogeneity at four target areas along the mixer. Numerical simulations were found to be a useful support for observing the complex three-dimensional flow inside the channels. Comparison with a known mixer, the tear-drop one, based on the same SAR principle, was also performed, to have a point of reference for evaluating performances. A good agreement was found between numerical and experimental results. Over the examined range of Reynolds numbers Re, the Y-Y micromixer showed at its exit an almost flat mixing characteristic, with a mixing efficiency higher than 0.9; conversely, the tear-drop mixer showed a relevant decrease of efficiency at the midrange. The good performance of the Y-Y micromixer is due to the three-dimensional 90 deg change of direction that occurs in its channel geometry, which causes a fluid swirling already at the midrange of Reynolds numbers. Consequently, the fluid path is lengthened and the interfacial area of species is increased, compensating for the residence time reduction.


1994 ◽  
Vol 116 (3) ◽  
pp. 331-336 ◽  
Author(s):  
Ding-Yu Fei ◽  
James D. Thomas ◽  
Stanley E. Rittgers

Flow in distal end-to-side anastomoses of iliofemoral artery bypass grafts was simulated using a steady flow, three-dimensional numerical model. With the proximal artery occluded, anastomotic angles were varied over 20, 30, 40, 45, 50, 60 and 70 deg while the inlet Reynolds numbers were 100 and 205. Fully developed flow in the graft became somewhat skewed toward the inner wall with increasing angle for both Reynolds numbers. Separated flow regions were seen along the inner arterial wall (toe region) for angles ≥ 60 deg at Re = 100 and for angles ≥ 45 deg at Re = 205 while a stagnation point existed along the outer arterial wall (floor region) for all cases which moved downstream relative to the toe of the anastomosis with decreasing angles. Normalized shear rates (NSR) along the arterial wall varied widely throughout the anastomotic region with negative values seen in the separation zones and upstream of the stagnation points which increased in magnitude with angle. The NSR increased with distance downstream of the stagnation point and with magnitudes which increased with the angle. Compared with observations from chronic in vivo studies, these results appear to support the hypothesis of greater intimal hyperplasia occurring in regions of low fluid shear.


Sign in / Sign up

Export Citation Format

Share Document