Combined Air Supply at Fuel Pump Entrance

Author(s):  
Salimzhan Gafurov ◽  
Leonid Rodionov ◽  
Asgat Gimadiev

Previous research has shown that aviation fuel pumps, which consist of a screw and centrifugal wheels are the most loaded units of the gas turbine engines. Thus a fuel pump is the key component that limits the reliability and endurance of the fuel system and, as a result, of the whole engine. This paper describes the results of CFD simulations of the process getting free gas to enter the combined pump. The CFD analysis has been used to calculate an unsteady three-dimensional viscous flow of multi-component fluid in the fuel pump. The calculations have been used to determine unsteady loads of fuel pump in different operating modes. To examine the efficiency of the CFD analysis, we conducted a series of experiments. The experimental results proved the accuracy of the numerical model. The results can help to develop measures for the reduction of dynamic loads in aviation fuel pumps in case where combined air is at entrance to pump.

Author(s):  
Jie Gao ◽  
Chunde Tao ◽  
Dongchen Huo ◽  
Guojie Wang

Marine, industrial, turboprop and turboshaft gas turbine engines use nonaxisymmetric exhaust volutes for flow diffusion and pressure recovery. These processes result in a three-dimensional complex turbulent flow in the exhaust volute. The flows in the axial turbine and nonaxisymmetric exhaust volute are closely coupled and inherently unsteady, and they have a great influence on the turbine and exhaust aerodynamic characteristics. Therefore, it is very necessary to carry out research on coupled axial turbine and nonaxisymmetric exhaust volute aerodynamics, so as to provide reference for the high-efficiency turbine-volute designs. This paper summarizes and analyzes the recent advances in the field of coupled axial turbine and nonaxisymmetric exhaust volute aerodynamics for turbomachinery. This review covers the following topics that are important for turbine and volute coupled designs: (1) flow and loss characteristics of nonaxisymmetric exhaust volutes, (2) flow interactions between axial turbine and nonaxisymmetric exhaust volute, (3) improvement of turbine and volute performance within spatial limitations and (4) research methods of coupled turbine and exhaust volute aerodynamics. The emphasis is placed on the turbine-volute interactions and performance improvement. We also present our own insights regarding the current research trends and the prospects for future developments.


Author(s):  
Oliver Popp ◽  
Horst Zimmermann ◽  
J. Kutz

The flow field in a preswirled cooling air supply to a turbine rotor has been investigated by means of CFD-simulations. Coefficients for system efficiency are derived. The influences of various geometrical parameters for different configurations have been correlated with the help of appropriate coefficients. For some of the most important geometrical parameters of the coverplate receiver design recommendations have been found. For the preswirl nozzles the potential of efficiency improvement by contour design is highlighted.


Author(s):  
John T. Lindsay ◽  
C. W. Kauffman

Real Time Neutron Radiography (RTNR) is rapidly becoming a valuable tool for nondestructive testing and basic research with a wide variety of applications in the field of engine technology. The Phoenix Memorial Laboratory (PML) at the University of Michigan has developed a RTNR facility and has been using this facility to study several phenomena that have direct application to internal combustion and gas turbine engines. These phenomena include; 1) the study of coking and debris deposition in several gas turbine nozzles (including the JT8D), 2) the study of lubrication problems in operating standard internal combustion engines and in operating automatic transmissions (1, 2, 3), 3) the location of lubrication blockage and subsequent imaging of the improvement obtained from design changes, 4) the imaging of sprays inside metallic structures in both a two-dimensional, standard radiographic manner (4, 5) and in a computer reconstructed, three-dimensional, tomographic manner (2, 3), and 5) the imaging of the fuel spray from an injector in a single cylinder diesel engine while the engine is operating. This paper will show via slides and real time video, the above applications of RTNR as well as other applications not directly related to gas turbine engines.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
James Yang ◽  
Ting Liu ◽  
Wenhong Dai ◽  
Penghua Teng

In Sweden, the dam-safety guidelines call for an overhaul of many existing bottom outlets. During the opening of an outlet gate, understanding the transient air-water flow is essential for its safe operation, especially under submerged tailwater conditions. Three-dimensional CFD simulations are undertaken to examine air-water flow behaviors at both free and submerged outflows. The gate, hoisted by wire ropes and powered by AC, opens at a constant speed. A mesh is adapted to follow the gate movement. At the free outflow, the CFD simulations and model tests agree well in terms of outlet discharge capacity. Larger air vents lead to more air supply; the increment becomes, however, limited if the vent area is larger than 10 m2. At the submerged outflow, a hydraulic jump builds up in the conduit when the gate reaches approximately 45% of its full opening. The discharge is affected by the tailwater and slightly by the flow with the hydraulic jump. The flow features strong turbulent mixing of air and water, with build-up and break-up of air pockets and collisions of defragmented water bodies. The air demand rate is several times as much as required by steady-state hydraulic jump with free surface.


1976 ◽  
Vol 98 (4) ◽  
pp. 619-625
Author(s):  
K. H. Pech ◽  
N. L. Downing

Fuel pumps and metering systems are becoming more complex and expensive to meet the high performance requirements of advanced gas turbine engines. A simple, inlet throttled, centrifugal pump integrated with a retracting vane starting element provides the potential for a reliable, high performance design capable of reducing the cost, weight, and temperature rise of the fuel system. This paper presents the results of recent efforts to develop the retracting vane element and to integrate it with a vapor core centrifugal pump in order to meet the fuel performance and functional requirements of an advanced gas turbine main fuel pump.


1998 ◽  
Vol 120 (1) ◽  
pp. 43-49 ◽  
Author(s):  
O. Popp ◽  
H. Zimmermann ◽  
J. Kutz

The flow field in a preswirled cooling air supply to a turbine rotor has been investigated by means of CFD simulations. Coefficients for system efficiency are derived. The influences of various geometric parameters for different configurations have been correlated with the help of appropriate coefficients. For some of the most important geometric parameters of the coverplate receiver, design recommendations have been made. For the preswirl nozzles, the potential of efficiency improvement by contour design is highlighted.


1984 ◽  
Vol 106 (2) ◽  
pp. 125-134 ◽  
Author(s):  
W. Tabakoff

The objective of this paper is to review experimental and analytical investigations concerning the effect of the presence of solid particles on the performance of turbomachines. Experimental data on the effect of solid particles on turbine and compressor performance are examined. Some basic data have been reinterpreted to provide guidance for future design. The equations that govern the dynamics of the three-dimensional motion of solid particles suspended in compressible gas flow through a rotating cascade of a turbine are discussed. The results obtained from the solution of these equations are presented to indicate the location on the turbine blade subjected to erosion damage. Some erosion data relevant to gas turbine engines are discussed. The concluding remarks include a global view of the state of the art of particulate flow problems in turbomachinery.


Author(s):  
H. T. Johnson

This paper describes the design and experimental evaluation of a vane-type fuel pump that has operated successfully at speeds up to 49,500 rpm and outlet pressures up to 900 psig. The objective of the research was to produce a main-engine fuel pump for small gas-turbine engines capable of operating at engine shaft speed in order to reduce the bulk and complexity of the required gear drive train. The pump has a design JP-4 turbine-fuel flow rate of 2000 lb/hr at 650 psig. The successful completion of a 200-hr endurance run has verified that the high-speed capabilities have been achieved without sacrificing pump endurance life.


2021 ◽  
Vol 20 (3) ◽  
pp. 7-23
Author(s):  
Y. B. Aleksandrov ◽  
T. D. Nguyen ◽  
B. G. Mingazov

The article proposes a method for designing combustion chambers for gas turbine engines based on a combination of the use of calculations in a one-dimensional and three-dimensional formulation of the problem. This technique allows you to quickly design at the initial stage of creating and development of the existing combustion chambers using simplified calculation algorithms. At the final stage, detailed calculations are carried out using three-dimensional numerical calculations. The method includes hydraulic calculations, on the basis of which the distribution of the air flow passing through the main elements of the combustion chamber is determined. Then, the mixing of the gas flow downstream of the flame tube head and the air passing through the holes in the flame tube is determined. The mixing quality determines the distribution of local mixture compositions along the length of the flame tube. The calculation of the combustion process is carried out with the determination of the combustion efficiency, temperature, concentrations of harmful substances and other parameters. The proposed method is tested drawing on the example of a combustion chamber of the cannular type. The results of numerical calculations, experimental data and values obtained using the proposed method for various operating modes of the engine are compared.


Sign in / Sign up

Export Citation Format

Share Document