Axial Compressor Performance Maintenance

Author(s):  
Philip Levine ◽  
Leonard Angello

Methods of compressor performance maintenance for large utility combustion turbines continue to evolve. On-line water wash systems used to recover performance loss due to fouling are evolving that use less water. This paper derives a water wash model based on a thin film of water covering the airfoil surfaces. The economic potential for recovering “unrecoverable” losses due to increased roughness and erosion is evaluated. As an outage is needed to remove the compressor cover and perform the maintenance, the approach is to identify the most beneficial maintenance actions and an optimal maintenance interval.

1998 ◽  
Vol 120 (2) ◽  
pp. 256-261 ◽  
Author(s):  
A. P. Tarabrin ◽  
V. A. Schurovsky ◽  
A. I. Bodrov ◽  
J.-P. Stalder

The paper describes the phenomenon of axial compressor fouling due to aerosols contained in the air. Key parameters having effect on the level of fouling are determined. A mathematical model of a progressive compressor fouling using the stage-by-stage calculation method is developed. Calculation results on the influence of fouling on the compressor performance are presented. A new index of sensitivity of axial compressors to fouling is suggested. The paper gives information about Turbotect’s deposit cleaning method of compressor blading and the results of its application on an operating industrial gas turbine. Regular on-line and off-line washings of the compressor flow path make it possible to maintain a high level of engine efficiency and output.


Author(s):  
A. P. Tarabrin ◽  
V. A. Schurovsky ◽  
A. I. Bodrov ◽  
J.-P. Stalder

The paper describes the phenomenon of axial compressor fouling due to aerosols contained in the air. Key parameters having effect on the level of fouling are determined. A mathematical model of a progressive compressor fouling using the stage-by-stage calculation method is developed. Calculation results on the influence of fouling on the compressor performance are presented. A new index of sensitivity of axial compressors to fouling is suggested. The paper gives information about the Turbotect’s deposit cleaning method of compressor blading and the results of its application on an operating industrial gas turbine. Regular on line and off line washings of compressor flow path make it possible to maintain a high level of engine efficiency and output.


2010 ◽  
Vol 38 (3) ◽  
pp. 228-244 ◽  
Author(s):  
Nenggen Ding ◽  
Saied Taheri

Abstract Easy-to-use tire models for vehicle dynamics have been persistently studied for such applications as control design and model-based on-line estimation. This paper proposes a modified combined-slip tire model based on Dugoff tire. The proposed model takes emphasis on less time consumption for calculation and uses a minimum set of parameters to express tire forces. Modification of Dugoff tire model is made on two aspects: one is taking different tire/road friction coefficients for different magnitudes of slip and the other is employing the concept of friction ellipse. The proposed model is evaluated by comparison with the LuGre tire model. Although there are some discrepancies between the two models, the proposed combined-slip model is generally acceptable due to its simplicity and easiness to use. Extracting parameters from the coefficients of a Magic Formula tire model based on measured tire data, the proposed model is further evaluated by conducting a double lane change maneuver, and simulation results show that the trajectory using the proposed tire model is closer to that using the Magic Formula tire model than Dugoff tire model.


1999 ◽  
Vol 39 (4) ◽  
pp. 103-111 ◽  
Author(s):  
Frank Obenaus ◽  
Karl-Heinz Rosenwinkel ◽  
Jens Alex ◽  
Ralf Tschepetzki ◽  
Ulrich Jumar

This report presents the main components of a system for the model-based control of aerobic biological wastewater treatment plants. The crucial component is a model which is linked to the actual processes via several interfaces and which contains a unit which can immediately follow up the current process state. The simulation calculation of the model is based on data which are yielded by on-line measuring devices. If the sensors should fail at times, there are available a number of alternative concepts, some of which are based on the calculations of artificial neural networks or linear methods.


Author(s):  
Ioannis Kolias ◽  
Alexios Alexiou ◽  
Nikolaos Aretakis ◽  
Konstantinos Mathioudakis

A mean-line compressor performance calculation method is presented that covers the entire operating range, including the choked region of the map. It can be directly integrated into overall engine performance models, as it is developed in the same simulation environment. The code materializing the model can inherit the same interfaces, fluid models, and solvers, as the engine cycle model, allowing consistent, transparent, and robust simulations. In order to deal with convergence problems when the compressor operates close to or within the choked operation region, an approach to model choking conditions at blade row and overall compressor level is proposed. The choked portion of the compressor characteristics map is thus numerically established, allowing full knowledge and handling of inter-stage flow conditions. Such choking modelling capabilities are illustrated, for the first time in the open literature, for the case of multi-stage compressors. Integration capabilities of the 1D code within an overall engine model are demonstrated through steady state and transient simulations of a contemporary turbofan layout. Advantages offered by this approach are discussed, while comparison of using alternative approaches for representing compressor performance in overall engine models is discussed.


2013 ◽  
Vol 676 ◽  
pp. 321-324
Author(s):  
Lei Guo ◽  
Qun Zhan Li

Accidents of icing on catenary have great impacts on normal operation of trains. An on-line anti-icing technology used static var generator (SVG) for catenary was proposed, which can prevent icing formation without interrupting trains normal operation. The heat balance equations for catenary were solved, whose results were compared with data provided by TB/T 3111 and testing show the equation was correct. The simulation model based on Matlab was bulit , whose results and analysis show the correctness of the method.


1992 ◽  
Author(s):  
Michael E. Parten ◽  
R. R. Rhinehart ◽  
Vikram Singh

Author(s):  
Yogi Sheoran ◽  
Bruce Bouldin ◽  
P. Murali Krishnan

Inlet swirl distortion has become a major area of concern in the gas turbine engine community. Gas turbine engines are increasingly installed with more complicated and tortuous inlet systems, like those found on embedded installations on Unmanned Aerial Vehicles (UAVs). These inlet systems can produce complex swirl patterns in addition to total pressure distortion. The effect of swirl distortion on engine or compressor performance and operability must be evaluated. The gas turbine community is developing methodologies to measure and characterize swirl distortion. There is a strong need to develop a database containing the impact of a range of swirl distortion patterns on a compressor performance and operability. A recent paper presented by the authors described a versatile swirl distortion generator system that produced a wide range of swirl distortion patterns of a prescribed strength, including bulk swirl, twin swirl and offset swirl. The design of these swirl generators greatly improved the understanding of the formation of swirl. The next step of this process is to understand the effect of swirl on compressor performance. A previously published paper by the authors used parallel compressor analysis to map out different speed lines that resulted from different types of swirl distortion. For the study described in this paper, a computational fluid dynamics (CFD) model is used to couple upstream swirl generator geometry to a single stage of an axial compressor in order to generate a family of compressor speed lines. The complex geometry of the analyzed swirl generators requires that the full 360° compressor be included in the CFD model. A full compressor can be modeled several ways in a CFD analysis, including sliding mesh and frozen rotor techniques. For a single operating condition, a study was conducted using both of these techniques to determine the best method given the large size of the CFD model and the number of data points that needed to be run to generate speed lines. This study compared the CFD results for the undistorted compressor at 100% speed to comparable test data. Results of this study indicated that the frozen rotor approach provided just as accurate results as the sliding mesh but with a greatly reduced cycle time. Once the CFD approach was calibrated, the same techniques were used to determine compressor performance and operability when a full range of swirl distortion patterns were generated by upstream swirl generators. The compressor speed line shift due to co-rotating and counter-rotating bulk swirl resulted in a predictable performance and operability shift. Of particular importance is the compressor performance and operability resulting from an exposure to a set of paired swirl distortions. The CFD generated speed lines follow similar trends to those produced by parallel compressor analysis.


Sign in / Sign up

Export Citation Format

Share Document