Practical Use of Unsteady CFD and FEM Forced Response Calculation in the Design of Axial Turbocharger Turbines

Author(s):  
D. Filsinger ◽  
Ch. Frank ◽  
O. Scha¨fer

One of the challenges in the design of rotating machinery is the issue of vibrations. The structure, no matter if talking about compressors or turbines, is subject to various sources of excitation that lead to vibrations under resonance conditions. This paper deals with the question of turbine blade vibrations. It describes practical examples of the implementation of unsteady computational fluid dynamics (CFD) and forced response calculation by means of finite element methods (FEM) applied to the design and development procedure of axial turbocharger turbines. The four examples deal with various questions which rise at different stages in the development process of turbines. One example concerns to the expected excitation of the rotor due to the stator. It demonstrates the advantages of using CFD in the prediction of this kind of excitation. Another one deals with an engine application, for which the influence of the inlet housing on the blade excitation had to be assessed. Both examples rely on the comparison of calculated excitation to the corresponding experimental strain gauge measurement for a reference case. This reference case can be used for calibration. A further case study concerns to blade vibrations in pulse charging systems. It was the intention not only to determine a spatial resolution of the excitation, but also to calculate true stresses by means of forced response calculations with FEM. In this example first bending mode shapes of the turbine blade of a rather simple type were investigated. Higher, more complex mode shapes were also investigated to prove the method. In this example, dynamic stresses were also estimated, using calculated excitation as input for forced response calculations. The results show that the use of modern numerical methods reduces cost and required time in the design of axial turbocharger turbines. They help to substantially reduce the experimental effort, while even more complete information concerning excitation and response of the structure is made available for the designer.

Author(s):  
Andrea Amedei ◽  
Enrico Meli ◽  
Andrea Rindi ◽  
Benedetta Romani ◽  
Lorenzo Pinelli ◽  
...  

Abstract The need for high performances is pushing the complexity of mechanical design at very high levels, especially for turbomachinery components. In this field, structural topology optimization methods together with additive manufacturing techniques for high resistant alloys are considered very promising tools, but their potentialities have not been deeply investigated yet for critical rotating components like new-generation turbine blades. In this framework, this research work proposes a methodology for the design, the optimization and the additive manufacturing of extremely stressed turbomachinery components like turbine blade-rows. The presented procedure pays particular attention to important aspects of the problems as fluid-structure interactions (forced response and flutter phenomena) and fatigue of materials, going beyond the standard structural optimization approaches found in the literature. The new design strategy enables a substantial reduction of the component mass, limiting the maximum stress and improving the vibrational behaviour of the system in terms of eigenfrequencies, modal shapes and fatigue life. Furthermore, the numerical procedure shows robustness and efficiency, making the proposed methodology a good tool for rapid design and prototyping, and for reducing the design costs and the time-to-market typical of this kind of mechanical elements. The procedure has been applied to a low-pressure turbine rotor to improve the aeromechanical behavior while keeping the aerodynamic performance. From the original geometry, mode-shapes, forcing functions (due to rotor/stator interactions) and aerodynamic damping have been numerically evaluated and are used as input data for the following topological optimization. Finally, the optimized geometry has been verified in order to confirm the improved aeromechanical design. After the structural topology optimization, the final geometries provided by the procedure have been then properly rendered to make them suitable for additive manufacturing. Some prototypes of the new optimized turbine blade have been manufactured from aluminum to be tested mechanically and in terms of fatigue.


Author(s):  
E. P. Petrov ◽  
Z.-I. Zachariadis ◽  
A. Beretta ◽  
R. Elliott

A new effective method for comprehensive modelling of gas flow effects on vibration of nonlinear vibration of bladed discs has been developed for a case when effect of the gas flow on the mode shapes is significant. The method separates completely the structural dynamics calculations from the significantly more computationally expensive computational fluid dynamics (CFD) calculations while provides the high accuracy of modelling for aerodynamic effects. A comprehensive analysis of the forced response using the new method has been performed for a realistic turbine bladed disc with root-disc joints, tip and underplatform dampers. The full chain of aerodynamic and structural calculations are performed: (i) determination of boundary conditions for CFD; (ii) CFD analysis; (iii) calculation of the aerodynamic characteristics required by the new method; (iv) nonlinear forced response analysis using the MAIM. The efficiency of the friction damping devices has been studied and compared for several resonance frequencies and engine orders. Advantages of the method for aerodynamic effect modelling have been demonstrated.


2004 ◽  
Vol 126 (1) ◽  
pp. 175-183 ◽  
Author(s):  
E. P. Petrov

An effective method for analysis of periodic forced response of nonlinear cyclically symmetric structures has been developed. The method allows multiharmonic forced response to be calculated for a whole bladed disk using a periodic sector model without any loss of accuracy in calculations and modeling. A rigorous proof of the validity of the reduction of the whole nonlinear structure to a sector is provided. Types of bladed disk forcing for which the method may be applied are formulated. A multiharmonic formulation and a solution technique for equations of motion have been derived for two cases of description for a linear part of the bladed disk model: (i) using sector finite element matrices and (ii) using sector mode shapes and frequencies. Calculations validating the developed method and a numerical investigation of a realistic high-pressure turbine bladed disk with shrouds have demonstrated the high efficiency of the method.


2021 ◽  
pp. 0309524X2110116
Author(s):  
Oumnia Lagdani ◽  
Mostapha Tarfaoui ◽  
Mourad Nachtane ◽  
Mourad Trihi ◽  
Houda Laaouidi

In the far north, low temperatures and atmospheric icing are a major danger for the safe operation of wind turbines. It can cause several problems in fatigue loads, the balance of the rotor and aerodynamics. With the aim of improving the rigidity of the wind turbine blade, composite materials are currently being used. A numerical work aims to evaluate the effect of ice on composite blades and to determine the most adequate material under icing conditions. Different ice thicknesses are considered in the lower part of the blade. In this paper, modal analysis is performed to obtain the natural frequencies and corresponding mode shapes of the structure. This analysis is elaborated using the finite element method (FEM) computer program through ABAQUS software. The results have laid that the natural frequencies of the blade varied according to the material and thickness of ice and that there is no resonance phenomenon.


2021 ◽  
pp. 1-31
Author(s):  
Lorenzo Pinelli ◽  
Andrea Amedei ◽  
Enrico Meli ◽  
Federico Vanti ◽  
Benedetta Romani ◽  
...  

Abstract The need for high performances is pushing the complexity of mechanical design at very high levels, especially for turbomachinery components. Structural topology optimization methods together with additive manufacturing techniques for high resistant alloys are considered very promising tools, but their potentialities have not been deeply investigated yet for critical rotating components like new-generation turbine blades. This research work proposes a methodology for the design, the optimization and the additive manufacturing of extremely stressed turbomachinery components like turbine blade-rows. The presented procedure pays particular attention to important aspects of the problems as fluid-structure interactions and fatigue of materials, going beyond the standard structural optimization approaches found in the literature. The numerical procedure shows robustness and efficiency, making the proposed methodology a good tool for rapid design and prototyping, and for reducing the design costs and the time-to-market typical of these mechanical elements. The procedure has been applied to a low-pressure turbine rotor to improve the aeromechanical behavior while keeping the aerodynamic performance. From the original geometry, mode-shapes, forcing functions and aerodynamic damping have been numerically evaluated and are used as input data for the following topological optimization. Finally, the optimized geometry has been verified in order to confirm the improved aeromechanical design. After the structural topology optimization, the final geometries provided by the procedure have been then properly rendered to make them suitable for additive manufacturing. Some prototypes of the new optimized turbine blade have been manufactured to be tested in terms of fatigue.


Author(s):  
Thomas Hauptmann ◽  
Christopher E. Meinzer ◽  
Joerg R. Seume

Depending on the in service condition of jet engines, turbine blades may have to be replaced, refurbished, or repaired in the course of an engine overhaul. Thus, significant changes of the turbine blade geometry can be introduced due to regeneration and overhaul processes. Such geometric variances can affect the aerodynamic and aeroelastic behavior of turbine blades. One goal in the development of the regeneration process is to estimate the aerodynamic excitation of turbine blades depending on these geometric variances caused during the regeneration. Therefore, this study presents an experimentally validated comparison of two methods for the prediction of forced response in a multistage axial turbine. Two unidirectional fluid structure interaction (FSI) methods, a time-linearized and a time-accurate with a subsequent linear harmonic analysis, are employed and the results validated against experimental data. The results show that the vibration amplitude of the time-linearized method is in good agreement with the experimental data and, also requires lower computational time than the time-accurate FSI. Based on this result, the time-linearized method is used to perform a sensitivity study of the tip clearance size of the last rotor blade row of the five stage axial turbine. The results show that an increasing tip clearances size causes an up to 1.35 higher vibration amplitude compared to the reference case, due to increased forcing and decreased damping work.


Author(s):  
C. Selcan ◽  
B. Cukurel ◽  
J. Shashank

In an attempt to investigate the acoustic resonance effect of serpentine passages on internal convection heat transfer, the present work examines a typical high pressure turbine blade internal cooling system, based on the geometry of the NASA E3 engine. In order to identify the associated dominant acoustic characteristics, a numerical FEM simulation (two-step frequency domain analysis) is conducted to solve the Helmholtz equation with and without source terms. Mode shapes of the relevant identified eigenfrequencies (in the 0–20kHz range) are studied with respect to induced standing sound wave patterns and the local node/antinode distributions. It is observed that despite the complexity of engine geometries, as a first order approximation, the predominant resonance behavior can be modeled by a same-ended straight duct. Therefore, capturing the physics observed in a generic geometry, the heat transfer ramifications are experimentally investigated in a scaled wind tunnel facility at a representative resonance condition. Focusing on the straight cooling channel’s longitudinal eigenmode in the presence of an isolated rib element, the impact of standing sound waves on convective heat transfer and aerodynamic losses are demonstrated by liquid crystal thermometry, local static pressure and sound level measurements. The findings indicate a pronounced heat transfer influence in the rib wake separation region, without a higher pressure drop penalty. This highlights the potential of modulating the aero-thermal performance of the system via acoustic resonance mode excitations.


Author(s):  
Bernd Beirow ◽  
Felix Figaschewsky ◽  
Arnold Kühhorn ◽  
Alfons Bornhorn

The potential of intentional mistuning to reduce the maximum forced response is analyzed within the development of an axial turbine blisk for ship diesel engine turbocharger applications. The basic idea of the approach is to provide an increased aerodynamic damping level for particular engine order excitations and mode shapes without any significant distortions of the aerodynamic performance. The mistuning pattern intended to yield a mitigation of the forced response is derived from an optimization study applying genetic algorithms. Two blisk prototypes have been manufactured a first one with and another one without employing intentional mistuning. Hence, the differences regarding the real mistuning and other modal properties can be experimentally determined and evaluated as well. In addition, the experimental data basis allows for updating structural models which are well suited to compute the forced response under operational conditions. In this way, the real benefit achieved with the application of intentional mistuning is demonstrated.


Author(s):  
J. M. Allen ◽  
L. B. Erickson

A NASTRAN finite element analysis of a free standing gas turbine blade is presented. The analysis entails calculation of the first four natural frequencies, mode shapes, and relative vibratory stresses, as well as deflections and stresses due to centrifugal loading. The stiffening effect of the centrifugal force field was accounted for by using NASTRAN’s differential stiffness option. Natural frequencies measured in a rotating test correlated well with computed results. Areas of maximum vibratory stress (fundamental mode) coincided with the three zones of crack initiation observed in a metallographic examination of a fatigue failure. Airfoil stress distributions were found to be significantly different from that predicted by generalized beam theory, especially near the airfoil-platform junction.


Author(s):  
Bernd Beirow ◽  
Arnold Kühhorn ◽  
Felix Figaschewsky ◽  
Jens Nipkau

The forced response of an E3E-type high pressure compressor blisk front rotor is analyzed with regard to intentional mistuning and its robustness towards additional random mistuning. Both a chosen alternating mistuning pattern and artificial mistuning patterns optimized concerning the forced response are considered. Focusing on three different blade modes, subset of nominal system mode-based reduced order models are employed to compute the forced response. The disk remains unchanged while the Young’s modulus of each blade is used to define the particular mistuning pattern. The well established aerodynamic influence coefficient technique is employed to model aeroelastic coupling and hence to consider the strongly mode- and inter blade phase angle-dependent aerodynamic damping contribution. It has been found that a reduction of the maximum forced response beyond that of the tuned reference can be achieved for particular mistuning patterns and all modes considered. This implies an exciting engine order which would cause a low nodal diameter mode in case of a tuned blisk. At best a nearly 50% reduction of maximum response magnitudes is computed for the fundamental bending mode and large mistuning. The solution proved to be robust towards additional random mistuning of reasonable magnitude, which is of particular interest with regard to a potential technical realization. In case of small mistuning as assumed for the first torsion and the longitudinal bending mode the advantage of achieving response magnitudes beyond the tuned reference gets lost indeed, if random mistuning is superimposed. However, mostly a lower response level is calculated compared to responses obtained from models adjusted to mistuning determined by experiment.


Sign in / Sign up

Export Citation Format

Share Document