An Experimental Investigation of the Effect of an Active Magnetic Damper on Reducing Subsynchronous Vibrations in Rotating Machinery

Author(s):  
M. Kasarda ◽  
H. Mendoza ◽  
R. G. Kirk ◽  
A. Wicks

Presented here are results from an experimental study investigating the reduction of subsynchronous vibrations in rotating machinery by adding a single active magnetic bearing actuator to a flexible rotor-bearing system. In this scenario, the Active Magnetic Bearing (AMB) actuator is used as an Active Magnetic Damper (AMD) and is not utilized for rotor support. The AMD can be used to increase stability margins by adding more damping in strategic locations on a rotor allowing for increased tolerance to instability mechanisms and enabling increased performance and efficiency in turbomachinery. Results from an experimental 3-mass test rig supported in fluid-film bushings are presented here. The study shows that subsynchronous vibrations are reducible with an AMD located near the mid-span of the rotor and up to a 98% reduction in the amplitude of subsynchronous vibrations is demonstrated. The overall results from this work demonstrate that reduction in subsynchronous response is feasible and that full rotor dynamic analysis and design is critical for the successful application of this approach as critical speed locations can be altered.

2016 ◽  
Vol 23 (5) ◽  
pp. 770-781 ◽  
Author(s):  
S Mahdi Darbandi ◽  
Mehdi Behzad ◽  
Hassan Salarieh ◽  
Hamid Mehdigholi

This study is concerned with the problem of harmonic disturbance rejection in active magnetic bearing systems. A modified notch filter is presented to identify both constant and harmonic disturbances caused by sensor runout and mass unbalance. The proposed method can attenuate harmonic displacement and currents at the synchronous frequency and its integer multiples. The reduction of stability is a common problem in adaptive techniques because they alter the original closed-loop system. The main advantage of the proposed method is that it is possible to determine the stability margins of the system by few parameters. The negative phase shift of the modified notch filter can be tuned to achieve a desired phase margin, while the gain margin can also be adjusted separately. It is shown that the modified notch filter can be designed to suppress multiple harmonics at the same time. It is implemented on a three-pole magnetic bearing test rig to evaluate its performance. Simulation and experimental results indicate that the presented method can be successfully applied to compensate the periodic disturbances such as sensor runout and mass unbalance in active magnetic bearing systems.


Author(s):  
Erik Swanson ◽  
James F. Walton ◽  
Hooshang Heshmat

Gas turbine engines and high speed rotating machinery using magnetic bearings require auxiliary and backup bearings for reliability and safety of operation. A 140 mm diameter Zero Clearance Auxiliary Bearing (ZCAB) capable of supporting radial and/or thrust loads of up to 4500 N was designed for an advanced gas turbine engine. The ZCAB was fabricated and tested successfully up to the expected maximum operating speed of 18,000 rpm in a specially configured test rig. The test rig included a 36,000 rpm capable drive motor, a 64 kg rotor which simulates a gas turbine engine shaft dynamics, a damped ball bearing at the drive end and an active magnetic bearing next to the ZCAB. Operation in excess of 240 minutes and 20 transient engagements simulating magnetic bearing failures were completed in the initial tests. Post test inspection revealed minimal wear to the shaft and the ZCAB rollers, whereupon the ZCAB was reassembled for shipment. These preliminary tests confirm the operation and durability of the ZCAB in maintaining rotor support and continued operation even if the primary magnetic bearing support is overloaded or encounters a failure.


Author(s):  
Yixin Su ◽  
Yanhui Ma ◽  
Qian Shi ◽  
Suyuan Yu

Dynamic characteristics of active magnetic bearing (AMB)-flexible rotor system are closely related to control law. To analyze dynamic characteristics of flexible rotor suspended by AMBs with linear quadratic regulation (LQR) controller, a simple and effective method based on numerical calculation of unbalanced response is proposed in this article. The model of flexible rotor is established based upon Euler-Bernoulli beam theory and Lagrange’s equation. Disc on the rotor and its Gyro effect are taken into account. LQR controller based on error and its derivative is developed to control electromagnetic force of AMB at each degree of freedom (DOF) in real time. Under the unbalanced exciting force, the steady-state response and transient response in time domain of each node of flexible rotor at 0–4000 rad/s are calculated numerically. The critical speeds of rotor are obtained by identification method quickly and easily.


Author(s):  
Helmut Habermann ◽  
Maurice Brunet

The active magnetic bearing is based on the use of forces created by a magnetic field to levitate the rotor without mechanical contact between the stationary and moving parts. A ferromagnetic ring fixed on the rotor “floats” in the magnetic fields generated by the electromagnets, which are mounted as two sets of opposing pairs. The current is transmitted to the electromagnetic coils through amplifiers. The four electromagnets control the rotor’s position in response to the signals transmitted from the sensors. The rotor is maintained in equilibrium under the control of the electromagnetic forces. Its position is determined by means of sensors which continuously monitor any displacements through an electronic control system. As in every control system, damping of the loop is provided by means of a phase advance command from one or more differenciating circuits of the position error signal. The capability of modifying the electromagnetic force both in terms of amplitude and phase leads to the benefit of specific properties for the application, in particular: - automatic balancing characterized by the rotation of the moving part around its main axis of inertia, and not around the axis of the bearings allowing operation without vibrations, - adjustable damping of the suspension allowing easy passing of the critical speeds of the rotor, - high and adjustable stiffness yielding maximum accuracy of rotor equilibrium position, - permanent diagnosis of machine operation due to the knowledge of all rotation characteristics (speed, loads on the bearings, position of the rotation axis, eccentricity, out-of-balance, disturbance frequency).


1996 ◽  
Vol 118 (2) ◽  
pp. 154-163 ◽  
Author(s):  
T. Ishii ◽  
R. Gordon Kirk

The active magnetic bearing (AMB) is a relatively new technology which has many advantages compared with conventional bearing design. In an AMB system, the rolling-element back-up bearings are indispensable to protect the magnetic bearing rotor and stator, and other stationary seals along the rotor shaft. In this paper, a theoretical formulation is proposed and solved numerically to examine the transient response of the flexible rotor, from the time just previous to when the AMB shuts down and including the rotor drop onto the back-up bearing. The backward whirl of the rotor, which may lead to the destructive damage of the machinery, has been analytically predicted at very light support damping and very high support damping. Also, the vibration due to the nonlinearity of the contact point geometry has been included in the analysis. The influence of the support damping on the displacement of the disk and also the contact force between the journal and the inner-race of the back-up bearing have been computed for various rotor system parameters. By comparing these results with the optimum support damping for the simple flexible rotor model, it is shown that this support damping optimization can be applicable for specifying the required optimum range of support damping for the back-up bearings of AMB systems.


Author(s):  
Yingguang Wang ◽  
Jiancheng Fang ◽  
Shiqiang Zheng

For a magnetically levitated flexible rotor (MLFR), the amount of residual imbalance not only generates undesired vibrations, but also results in excessive bending, which may cause it hit to the auxiliary bearings. Thus, balancing below the critical speed is essential for the MLFR to prevent the impact. This paper proposes a balancing method of high precision and high efficiency, basing on virtual trial-weights. First, to reduce the computed error of rotor's mode shapes, a synchronous notch filter is inserted into the active magnetic bearing (AMB) controller, achieving a free support status. Then, AMBs provide the rotor with the synchronous electromagnetic forces (SEFs) to simulate the trial-weights. The SEFs with the initial angles varying from 0 deg to 360 deg in the rotational frame system result in continuous changes in the MLFR's deflection. Last, correction masses are calculated according to the changes. Compared to the trail-weights method, the new method needs not test-runs, which improves the balancing efficiency. Compared to the no trail-weights method, the new method does not require a precise model of the rotor-bearing system, which is difficult to acquire in the real system. Experiment results show that the novel method can reduce the residual imbalance effectively and accurately.


Sign in / Sign up

Export Citation Format

Share Document