Coriolis Forces in Forced Response Analysis of Mistuned Bladed Discs

Author(s):  
M. Nikolic ◽  
E. P. Petrov ◽  
D. J. Ewins

The problem of estimating the mutual interaction of the effects of Coriolis forces and of blade mistuning on the vibration characteristics of bladed discs is addressed in this paper. The influence of different degrees of mistuning on forced response and amplification factors are studied in the presence of Coriolis forces and then compared to their non-Coriolis counterparts using a computationally inexpensive, yet representative, model of a bladed disc. The primary objective of the study reported in this paper is to establish whether current mistuned bladed disc analyses should incorporate Coriolis effects in order to represent accurately all the significant factors that affect the forced response levels.

2006 ◽  
Vol 129 (4) ◽  
pp. 730-739 ◽  
Author(s):  
M. Nikolic ◽  
E. P. Petrov ◽  
D. J. Ewins

The problem of estimating the mutual interaction of the effects of Coriolis forces and of blade mistuning on the vibration characteristics of bladed disks is addressed in this paper. The influence of different degrees of mistuning on forced response and amplification factors are studied in the presence of Coriolis forces and then compared to their non-Coriolis counterparts using a computationally inexpensive, yet representative, model of a bladed disk. The primary objective of the study reported in this paper is to establish whether current mistuned bladed disk analyses should incorporate Coriolis effects in order to represent accurately all the significant factors that affect the forced response levels.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Xuanen Kan ◽  
Bo Zhao

To investigate the influence of Coriolis force on vibration characteristics of mistuned bladed disk, a bladed disk with 22 blades is employed and the effects of different rotational speeds and excitation engine orders on the maximum forced response are discussed considering the effects of Coriolis forces. The results show that if there are frequency veering regions, the largest split of double natural frequencies of each modal family considering the effects of Coriolis forces appears at frequency veering region. In addition, the amplitude magnification factor considering the Coriolis effects is increased by 1.02% compared to the system without considering the Coriolis effects as the rotating speed is 3000 rpm, while the amplitude magnification factor is increased by 2.76% as the rotating speed is 10000 rpm. The results indicate that the amplitude magnification factor may be moderately enhanced with the increasing of rotating speed. Moreover, the position of the maximum forced response of bladed disk may shift from one blade to another with the increasing of the rotational speed, when the effects of Coriolis forces are considered.


Author(s):  
Jens Aschenbruck ◽  
Christopher E. Meinzer ◽  
Linus Pohle ◽  
Lars Panning-von Scheidt ◽  
Joerg R. Seume

The regeneration of highly loaded turbine blades causes small variations of their geometrical parameters. To determine the influence of such regeneration-induced variances of turbine blades on the nozzle excitation, an existing air turbine is extended by a newly designed stage. The aerodynamic and the structural dynamic behavior of the new turbine stage are analyzed. The calculated eigenfrequencies are verified by an experimental modal analysis and are found to be in good agreement. Typical geometric variances of overhauled turbine blades are then applied to stator vanes of the newly designed turbine stage. A forced response analysis of these vanes is conducted using a uni-directional fluid-structure interaction approach. The effects of geometric variances on the forced response of the rotor blade are evaluated. It is shown that the vibration amplitudes of the response are significantly higher for some modes due to the additional wake excitation that is introduced by the geometrical variances e.g. 56 times higher for typical MRO-induced variations in stagger-angle.


Author(s):  
Kiran Manoharan ◽  
Travis Smith ◽  
Benjamin Emerson ◽  
Christopher M. Douglas ◽  
Tim Lieuwen ◽  
...  

This study is motivated by the necessity to develop a low order prediction approach for unsteady heat release response characteristics in lean premixed gas turbine combustors. This in turn requires an accurate description of the coherent hydrodynamic oscillations induced in the combustor flow by acoustic forcing. Time resolved velocity and flame position fields are obtained using sPIV and OH-PLIF measurements on a single nozzle, swirl-stabilized, premixed, methane-air flame in a model “unwrapped” annular combustor rig. A natural acoustic oscillation in the rig at 115 Hz results in a coherent flow oscillation that is concentrated primarily within the shear layer between the annular jet flow and the central recirculation zone. A linear stability analysis performed about time averaged base flow fields shows that the flow does not have any self-excited hydrodynamic modes. We then compare predictions from a forced response analysis at a forcing frequency of 115 Hz, based on the linearized Navier-Stokes equations for this coherent response. Good qualitative agreement between linear forced response analysis predictions and experimental response results, is seen for the spatial variation of velocity oscillation amplitude fields, away from the burner centerline. Further, good quantitative agreement between predictions and the experimental response is seen for the phase speed of velocity oscillations along the shear layer between the annular jet and the central recirculation zone. This phase velocity is an important flow field characteristic that has a significant impact on the heat release response that results from these coherent velocity oscillations. Present methods for forced response analysis assume uniform forcing amplitude along the radial direction at the forcing location, as well as, open flows along the streamwise direction. Both these assumptions are not strictly true for the present burner which has a center body on its axis. This maybe the reason for somewhat poor qualitative and quantitative agreement between experiments and predictions at the centerline.


Author(s):  
Tobias R. Müller ◽  
Damian M. Vogt ◽  
Klemens Vogel ◽  
Bent A. Phillipsen ◽  
Peter Hönisch

The effects of detailing on the prediction of forced-response in a transonic axial turbine stage, featuring a parted stator design, asymmetric inlet and outlet casings as well as rotor cavities, is investigated. Ensuring the mechanical integrity of components is of paramount importance for the safe and reliable operation of turbomachines. Among others, flow induced resonance excitation can lead to high-cycle fatigue (HCF) and potentially to damage of components unless properly damped. This numerical study is assessing the necessary degree of detailing in terms of spatial and temporal discretization, boundary conditions of the pre-stressed rotor geometry as well as geometrical detailing for the reliable prediction of the aerodynamic excitation of the structure. In this context, the sensitivity of the aerodynamic forcing is analyzed by means of the generalized force criterion, showing a significant influence for some of the investigated variations of the numerical model. Moreover, the origin and further progression of several low-engine-orders (LEO) within the flow field, as well as their interaction with different geometric details has been analyzed based on the numerical results obtained from a full 360° CFD-calculation of the investigated turbine stage. The predicted flow induced vibration of the structure has been validated by means of a full forced-response analysis, where a good agreement with tip-timing data has been found.


Author(s):  
Fanny M. Besem ◽  
Robert E. Kielb ◽  
Nicole L. Key

The frequency mistuning that occurs due to manufacturing variations and wear and tear of the blades can have a significant effect on the flutter and forced response behavior of a blade row. Similarly, asymmetries in the aerodynamic or excitation forces can tremendously affect the blade responses. When conducting CFD simulations, all blades are assumed to be tuned (i.e. to have the same natural frequency) and the aerodynamic forces are assumed to be the same on each blade except for a shift in interblade phase angle. The blades are thus predicted to vibrate at the same amplitude. However, when the system is mistuned or when asymmetries are present, some blades can vibrate with a much higher amplitude than the tuned, symmetric system. In this research, we first conduct a deterministic forced response analysis of a mistuned rotor and compare the results to experimental data from a compressor rig. It is shown that tuned CFD results cannot be compared directly with experimental data because of the impact of frequency mistuning on forced response predictions. Moreover, the individual impact of frequency, aerodynamic, and forcing function perturbations on the predictions is assessed, leading to the conclusion that a mistuned system has to be studied probabilistically. Finally, all perturbations are combined and Monte-Carlo simulations are conducted to obtain the range of blade response amplitudes that a designer could expect.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1656 ◽  
Author(s):  
Lin Li ◽  
Zhou Jiang ◽  
Yu Fan ◽  
Jun Li

In this paper, we investigate the coupled band gaps created by the locking phenomenon between the electric and flexural waves in piezoelectric composite plates. To do that, the distributed piezoelectric materials should be interconnected via a ‘global’ electric network rather than the respective ‘local’ impedance. Once the uncoupled electric wave has the same wavelength and opposite group velocity as the uncoupled flexural wave, the desired coupled band gap emerges. The Wave Finite Element Method (WFEM) is used to investigate the evolution of the coupled band gap with respect to propagation direction and electric parameters. Further, the bandwidth and directionality of the coupled band gap are compared with the LR and Bragg gaps. An indicator termed ratio of single wave (RSW) is proposed to determine the effective band gap for a given deformation (electric, flexural, etc.). The features of the coupled band gap are validated by a forced response analysis. We show that the coupled band gap, despite directional, can be much wider than the LR gap with the same overall inductance. This might lead to an alternative to adaptively create band gaps.


Author(s):  
Nikola Kovachev ◽  
Christian U. Waldherr ◽  
Jürgen F. Mayer ◽  
Damian M. Vogt

Resonant response of turbomachinery blades can lead to high cycle fatigue (HCF) if the vibration amplitudes are excessive. Accurate and reliable simulations of the forced response phenomenon require detailed CFD and FE models that may consume immense computational costs. In the present study, an alternative approach is applied, which incorporates nonlinear harmonic (NLH) CFD simulations in a one-way fluid-structure interaction (FSI) workflow for the prediction of the forced response phenomenon at reduced computational costs. Five resonance crossings excited by the stator in a radial inflow turbocharger turbine are investigated and the aerodynamic excitation and damping are predicted using this approach. Blade vibration amplitudes are obtained from a subsequent forced response analysis combining the aerodynamic excitation with aerodynamic damping and a detailed structural model of the investigated turbine rotor. A comparison with tip timing measurement data shows that all predicted values lay within the range of the mistuned blade response underlining the high quality of the utilized workflow.


Author(s):  
J. J. Moore ◽  
A. Palazzolo ◽  
R. Gadangi ◽  
T. A. Nale ◽  
S. A. Klusman ◽  
...  

Abstract A high speed damper test rig has been assembled at Texas A&M University to develop rotordynamic dampers for rocket engine turbopumps that operate at cryogenic temperatures, such as those used in the Space Shuttle Main Engines (SSMEs). Damping is difficult to obtain in this class of turbomachinery due to the low temperature and viscosity of the operating fluid. An impact damper has been designed and tested as a means to obtain effective damping in a rotorbearing system. The performance and behavior of the impact damper is verified experimentally in a cryogenic test rig at Texas A&M. Analytical investigations indicate a strong amplitude dependence on the performance of the impact damper. An optimum operating amplitude exists and is determined both analytically and experimentally. In addition, the damper performance is characterized by an equivalent viscous damping coefficient. The test results prove the impact damper to be a viable means to suppress vibration in a cryogenic rotorbearing system.


Sign in / Sign up

Export Citation Format

Share Document