Experimental and Numerical Investigation on Aeroacoustic Sound of Stator-Rotor System With Trailing Edge Blowing

Author(s):  
Yadong Wu ◽  
Xiaocheng Zhu ◽  
Zhaohui Du

The noise radiation from industrial ventilation fans becomes one of the key points during design process, and reducing the noise level is the effort of all investigations. Recently, the trailing edge blowing (TEB) technique is used in the field of aeroengines and multistage turbo machines, which is used to reduce the interaction between wake and blade rows to improve the aeroacoustic performance of the rotating machines. In this paper the TEB technique is employed in the low speed ventilation fan with upstream stator. How to reduce blade passing frequency (BPF) noise and total noise level was investigated with experimental measurements and noise prediction based on CFD simulation flow filed. Based on the experimental measurements and noise predictions, the inlet flow of the low speed rotor is the main noise source for noise radiation. With TEB wake management and TEB up to the momentumless wake, the inlet flow for rotor was more uniform and shed wake from the rotor blades was weaken. The noise level from the fans was reduced.

Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Dillon Alexander Wilson ◽  
Kul Pun ◽  
Poo Balan Ganesan ◽  
Faik Hamad

Microbubble generators are of considerable importance to a range of scientific fields from use in aquaculture and engineering to medical applications. This is due to the fact the amount of sea life in the water is proportional to the amount of oxygen in it. In this paper, experimental measurements and computational Fluid Dynamics (CFD) simulation are performed for three water flow rates and three with three different air flow rates. The experimental data presented in the paper are used to validate the CFD model. Then, the CFD model is used to study the effect of diverging angle and throat length/throat diameter ratio on the size of the microbubble produced by the Venturi-type microbubble generator. The experimental results showed that increasing water flow rate and reducing the air flow rate produces smaller microbubbles. The prediction from the CFD results indicated that throat length/throat diameter ratio and diffuser divergent angle have a small effect on bubble diameter distribution and average bubble diameter for the range of the throat water velocities used in this study.


Author(s):  
Y Wu ◽  
X Zhu ◽  
Z Du

A developed plate stator model with and without trailing edge blowing (TEB) is studied using experimental methods. Wake characteristics of flow over the stator in the three-dimensional wake regimes are studied using hot-wire anemometry (HWA) and particle image velocimetry (PIV) techniques. First, the mean velocity profiles have been measured in the wake of the stator using HWA. Four wake characteristics have been obtained through momentum thickness judgments: pure wake, weak wake, momentumless wake, and jet. These velocity profiles show some differences in momentum deficit for the four cases. Then, the velocity spectra of the pure wake and momentumless wake obtained through the HWA measurements showed that TEB can eliminate the shedding vortex of the stator. Characteristic length scales based on the wake turbulent intensity profiles showed that the momentumless wake can reduce the wake width and depth. PIV measurement is carried out to measure the flow field of the four wakes. Finally, the application of TEB approaching momentumless wake status is used on an industrial ventilation low-pressure axial fan to assess noise reduction. The results show that TEB can make the outlet of the stator uniform, reduce velocity fluctuation, destroy the vorticity structure downstream of the stator, and reduce interaction noise level of the stator and rotor.


Author(s):  
Ali Arshad ◽  
Qiushi Li ◽  
Simin Li ◽  
Tianyu Pan

Experimental investigations of the effect of inlet blade loading on the rotating stall inception process are carried out on a single-stage low-speed axial compressor. Temporal pressure signals from the six high response pressure transducers are used for the analysis. Pressure variations at the hub are especially recorded during the stall inception process. Inlet blade loading is altered by installing metallic meshed distortion screens at the rotor upstream. Three sets of experiments are performed for the comparison of results, i.e. uniform inlet flow, tip, and hub distortions, respectively. Regardless of the type of distortion introduced to the inflow, the compressor undergoes a performance drop, which is more severe in the hub distortion case. Under the uniform inlet flow condition, stall inception is caused by the modal type disturbance while the stall precursor switched to spike type due to the highly loaded blade tip. In the presence of high blade loading at the hub, spike disappeared and the compressor once again witnessed a modal type disturbance. Hub pressure fluctuations are observed throughout the process when the stall is caused by a modal wave while no disturbance is noticed at the hub in spike type stall inception. It is believed that the hub flow separation contributes to the modal type of stall inception phenomenon. Results are also supported by the recently developed signal processing techniques for the stall inception study.


2021 ◽  
Vol 39 (3) ◽  
pp. 963-968
Author(s):  
Rabi Rabi ◽  
Lhoucine Oufni ◽  
El-Hocine Youssoufi ◽  
Khamiss Cheikh ◽  
Hamza Badry ◽  
...  

Radon natural is the main cause of lung cancer in non-smokers. Therefore, the study of the behavior of radon and its descendants in indoor air is of the highest importance, in order to limit the risk of radiation dose due to inhalation of radon by members of the public. This article focuses to study the effects of meteorological parameters on the concentration and distribution of radon in a traditional hammam by both numerical simulations and experiments. The results of the numerical simulations are qualitative and show that the concentration and distribution of radon decrease when the ventilation rate increase, as well as, when the temperature increases, however, it increases with the increase in relative humidity. The results obtained by the numerical simulations were in agreement with those obtained experimentally with a maximum deviation of 7%. Numerical simulations allow a better estimate of the distribution of radon in indoor air.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5063
Author(s):  
Norbert Zöbinger ◽  
Thorsten Schweizer ◽  
Thomas Lauer ◽  
Heiko Kubach ◽  
Thomas Koch

The root cause of the initial low-speed pre-ignition (LSPI) is not yet clarified. The literature data suggest that a two-phase phenomenon is most likely triggering the unpredictable premature ignitions in highly boosted spark-ignition engines. However, there are different hypotheses regarding the actual initiator, whether it is a detached liquid oil-fuel droplet or a solid-like particle from deposits. Therefore, the present work investigates the possibility of oil droplet-induced pre-ignitions using a modern downsized engine with minimally invasive endoscopic optical accessibility incorporating in-cylinder lubrication oil detection via light-induced fluorescence. This setup enables the differentiation between liquid and solid particles. Furthermore, the potential of hot solid particles to initiate an ignition under engine-relevant conditions is analyzed numerically. To do so, the particle is generalized as a hot surface transferring heat to the reactive ambient gas phase. The gas-phase reactivity is represented as a TRF/air mixture based on RON/MON specifications of the investigated fuel. The chemical processes are predicted using a semi-detailed reaction mechanism, including 137 species and 633 reactions in a 2D CFD simulation framework. In the optical experiments, no evidence of a liquid oil droplet-induced pre-ignition could be found. Nevertheless, all observed pre-ignitions had a history of flying light-emitting objects. There are strong hints towards solid-like deposit LSPI initiation. The application of the numerical methodology to mean in-cylinder conditions of an LSPI prone engine operation point reveals that particles below 1000 K are not able to initiate a pre-ignition. A sensitivity analysis of the thermodynamic boundary conditions showed that the particle temperature is the most decisive parameter on the calculated ignition delay time.


AVIA ◽  
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
M F Afthon ◽  
M A Moelyadi

According to the objectivity of UAV helicopter, endurance is a valuable performance. To increase the endurance, we need to decrease the helicopter required power. Within the research scope in vertical movement only, 5 parameters of blades planform design were considered as design variables. They are root chord of the blades, taper location, taper ratio, pitch angle, and tip twist angle. Optimization was done using own developed genetic algorithm codes with built-in blade element momentum theory (BEMT) as a performance calculator. It was chosen due to its ability to estimate rotor performance quickly. Several CFD simulation were done to reduce the error of blade element momentum theory calculation. Using constant adjustment methods, BEMT can predict thrust and power with a difference with respect to CFD of 3.8% and 8.2% respectively. The optimization result gives the optimum blades design with improving almost 11% in efficiency which came out from 9.4% reduction in power required which is good for helicopter performance.


Author(s):  
Fakhre Ali ◽  
Lars Ellbrant ◽  
David Elmdahl ◽  
Tomas Grönstedt

This paper proposes a preliminary subsonic aircraft and engine noise assessment framework, capable of computing the aircraft total noise level at all three certification points (i.e. Approach, Lateral, and Flyover) defined by the International Civil Aviation Organisation. The proposed framework is numerically integrated to account for the complete aircraft noise sources (i.e. the fuselage, wings, landing gear, as well as noise sources resulting from the engine component level, (i.e. fan, compressor, combustor, turbine, and jet). The developed framework is based on a wide-range of empirical and semi-empirical correlations collected from the public domain literature. The fidelity of the framework also caters for flight effects such as atmospheric attenuation, spherical spreading, Doppler shift, lateral attenuation, retarded time and ground reflection. A conversion between the sound pressure level SPL [SPLdB] to effective perceived noise level EPNL [EPNdB] is also included to allow for a consistent comparison with the certification procedure. Through the successful deployment of the proposed framework a generic aircraft model, representative of a modern commercial carrier aircraft has been investigated, operating under representative operational conditions. The sound pressure level corresponding to various aircraft and engine component have been thoroughly investigated and verified with trends acquired based on the theory. Furthermore, the predictions made by the framework corresponding to the aforementioned three certification points have also been verified against the noise level measurements provided by the International Civil Aviation Organization. The results acquired exhibit good correlation against the verification data for total noise levels at the microphones. Furthermore, a component level comparison is also presented which exhibit good agreement with verification data. The deployed methodology can essentially be regarded as an enabling technology to support the effective and efficient implementation of framework(s) (i.e. Technoeconomic, Environmental and Risk Assessment) targeted to evaluate the existing and advanced aircraft and engine architectures in terms of operational performance and environmental impact.


Sign in / Sign up

Export Citation Format

Share Document