Micro Mixing Fuel Injectors for Low Emissions Hydrogen Combustion

Author(s):  
Steven R. Hernandez ◽  
Qing Wang ◽  
Vincent McDonell ◽  
Adel Mansour ◽  
Erlendur Steinthorsson ◽  
...  

The consideration of hydrogen as a fuel for next generation low emissions gas turbines raises a number of challenges and potential benefits relative to the combustion system. The present work examines the use of a micro-mixing injection strategy for hydrogen as a means to achieve rapid mixing and inherent flexibility for accommodating various staging, dilution, and dual fuel requirements for future gas turbine engines. The work presented includes numerical and experimental results associated with the fuel-air mixing process in a representative injector configuration. Measured NOx emissions and fuel/air ratios at the exit of the mixer are shown along with visualization of the reactions generated. Detailed computational fluid dynamics (CFD) is used in parallel to elucidate the behavior of the flow inside and downstream of the injectors. Results are also presented for natural gas to provide a point of reference. The results illustrate a number of interesting features and characteristics of the hydrogen/air mixtures which are in dramatic contrast to the behavior of natural gas/air mixtures. Comparison of the measured and modeled mixing behavior illustrates a number of challenges associated with the selection of a robust modeling approach for hydrogen/air combustion. The results demonstrate that the use of micro-mixing fuel injection to achieve ultra low NOx emissions is very promising.

Author(s):  
Don Ferguson ◽  
Geo. A. Richard ◽  
Doug Straub

In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for today’s engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.


Author(s):  
H. C. Eatock ◽  
M. D. Stoten

United Aircraft Corporation studied the potential costs of various possible gas turbine engines which might be used to reduce automobile exhaust emissions. As part of that study, United Aircraft of Canada undertook the preliminary design and performance analysis of high-pressure-ratio nonregenerated (simple cycle) gas turbine engines. For the first time, high levels of single-stage component efficiency are available extending from a pressure ratio less than 4 up to 10 or 12 to 1. As a result, the study showed that the simple-cycle engine may provide satisfactory running costs with significantly lower manufacturing costs and NOx emissions than a regenerated engine. In this paper some features of the preliminary design of both single-shaft and a free power turbine version of this engine are examined. The major component technology assumptions, in particular the high pressure ratio centrifugal compressor, employed for performance extrapolation are explained and compared with current technology. The potential low NOx emissions of the simple-cycle gas turbine compared to regenerative or recuperative gas turbines is discussed. Finally, some of the problems which might be encountered in using this totally different power plant for the conventional automobile are identified.


Author(s):  
Sebastian Go¨ke ◽  
Steffen Terhaar ◽  
Sebastian Schimek ◽  
Katharina Go¨ckeler ◽  
Christian O. Paschereit

Humidified Gas Turbines promise a significant increase in efficiency compared to the dry gas turbine cycle. In single cycle applications, efficiencies up to 60% seem possible with humidified turbines. Additionally, the steam effectively inhibits the formation of NOx emissions and also allows for operating the gas turbine on hydrogen-rich fuels. The current study is conducted within the European Advanced Grant Research Project GREENEST. The premixed combustion at ultra wet conditions is investigated for natural gas, hydrogen, and mixtures of both fuels, covering lower heating values between 27 MJ/kg and 120 MJ/kg. In addition to the experiments, the combustion process is also examined numerically. The flow field and the fuel-air mixing of the burner were investigated in a water tunnel using Particle Image Velocimetry and Laser Induced Fluorescence. Gas-fired tests were conducted at atmospheric pressure, inlet temperatures between 200°C and 370°C, and degrees of humidity from 0% to 50%. Steam efficiently inhibits the formation of NOx emissions. For all tested fuels, both NOx and CO emissions of below 10 ppm were measured up to near-stoichiometric gas composition at wet conditions. Operation on pure hydrogen is possible up to very high degrees of humidity, but even a relatively low steam content prevents flame flashback. Increasing hydrogen content leads to a more compact flame, which is anchored closer to the burner outlet, while increasing steam content moves the flame downstream and increases the flame volume. In addition to the experiments, the combustion process was modeled using a reactor network. The predicted NOx and CO emission levels agree well with the experimental results over a wide range of temperatures, steam content, and fuel composition.


Author(s):  
Jibao Li ◽  
Arthur H. Lefebvre ◽  
James R. Rollbuhler

An experimental investigation is conducted into the potential of effervescent atomizers as fuel injectors for gas turbine engines. The designs studied include three different configurations of multihole effervescent atomizers and an effervescent/airblast hybrid atomizer. In all tests the liquid employed is water. The spray characteristics investigated include drop size distributions and liquid flux distributions within the spray. The results obtained show that multi hole effervesent atomizers combine good atomization with uniform liquid flux distribution. This makes them especially suitable for application to annular combustors because they allow appreciable reductions to be made 1n the number of fuel injectors needed to achieve uniform circumferential fuel distribution. The hybrid atomizer also combines good atomization with the capability of wide cone angles. The only drawback exhibited by these atomizers is the need for a separate supply of atomizing air. This drawback could restrict their applications to non-aeronautical gas turbine engines.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4214
Author(s):  
Kranthi Kumar Maniam ◽  
Shiladitya Paul

The increased demand for high performance gas turbine engines has resulted in a continuous search for new base materials and coatings. With the significant developments in nickel-based superalloys, the quest for developments related to thermal barrier coating (TBC) systems is increasing rapidly and is considered a key area of research. Of key importance are the processing routes that can provide the required coating properties when applied on engine components with complex shapes, such as turbine vanes, blades, etc. Despite significant research and development in the coating systems, the scope of electrodeposition as a potential alternative to the conventional methods of producing bond coats has only been realised to a limited extent. Additionally, their effectiveness in prolonging the alloys’ lifetime is not well understood. This review summarises the work on electrodeposition as a coating development method for application in high temperature alloys for gas turbine engines and discusses the progress in the coatings that combine electrodeposition and other processes to achieve desired bond coats. The overall aim of this review is to emphasise the role of electrodeposition as a potential cost-effective alternative to produce bond coats. Besides, the developments in the electrodeposition of aluminium from ionic liquids for potential applications in gas turbines and the nuclear sector, as well as cost considerations and future challenges, are reviewed with the crucial raw materials’ current and future savings scenarios in mind.


Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.


Author(s):  
Yoshiharu Tsujikawa ◽  
Makoto Nagaoka

This paper is devoted to the analyses and optimization of simple and sophisticated cycles, particularly for various gas turbine engines and aero-engines (including scramjet engine) to achive the maximum performance. The optimization of such criteria as thermal efficiency, specific output and total performance for gas turbine engines, and overall efficiency, non-dimensional thrust and specific impulse for aero-engines have been performed by the optimization procedure with multiplier method. The comparisons of results with analytical solutions establishes the validity of the optimization procedure.


Author(s):  
H. S. Alkabie ◽  
G. E. Andrews

The influence of vane angle and hence swirl number of a radial swirler on the weak extinction, combustion inefficiency and NOx emissions was investigated at lean gas turbine combustor primary zone conditions. A 140mm diameter atmospheric pressure low NOx combustor primary zone was developed with a Mach number simulation of 30% and 43% of the combustor air flow into the primary zone through a curved blade radial swirler. The range of radial swirler vane angles was 0–60 degrees and central radially outward fuel injection was used throughout with a 600K inlet temperature. For zero vane angle radially inward jets were formed that impinged and generated a strong outer recirculation. This was found to have much lower NOx characteristics compared with a 45 degree swirler at the same pressure loss. However, the lean stability and combustion efficiency in the near weak extinction region was not as good. With swirl the central recirculation zone enhanced the combustion efficiency. For all the swirl vane angles there was little difference in combustion inefficiency between the swirlers. However, the NOx emissions were reduced at the lowest swirl angles and vane angles in the range 20–30 degrees were considered to be the optimum for central injection. NOx emissions for central injection as low as 5ppm at 15% oxygen and 1 bar were demonstrated for zero swirl and 20 degree swirler vane angle. This would scale to well under 25 ppm at pressure for all current industrial gas turbines.


2015 ◽  
Vol 22 (4) ◽  
pp. 53-58 ◽  
Author(s):  
Zygfryd Domachowski ◽  
Marek Dzida

Abstract The use of inlet air fogging installation to boost the power for gas turbine engines is widely applied in the power generation sector. The application of fogging to mechanical drive is rarely considered in literature [1]. This paper will cover some considerations relating to its application for gas turbines in ship drive. There is an important evaporative cooling potential throughout the world, when the dynamic data is evaluated, based on an analysis of coincident wet and dry bulb information. This data will allow ships’ gas turbine operators to make an assessment of the economics of evaporative fogging. The paper represents an introduction to the methodology and data analysis to derive the direct evaporative cooling potential to be used in marine gas turbine power output loss compensation.


Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji ◽  
Thomas Mee

The inlet fogging of gas turbine engines for power augmentation has seen increasing application over the past decade yet not a single technical paper treating the physics and engineering of the fogging process, droplet size measurement, droplet kinetics, or the duct behavior of droplets, from a gas turbine perspective, is available. This paper provides the results of extensive experimental and theoretical studies conducted over several years, coupled with practical aspects learned in the implementation of nearly 500 inlet fogging systems on gas turbines ranging in power from 5 to 250 MW. Part B of the paper treats the practical aspects of fog nozzle droplet sizing, measurement and testing presenting the information from a gas turbine fogging perspective. This paper describes the different measurement techniques available, covers design aspects of nozzles, provides experimental data on different nozzles and provides recommendations for a standardized nozzle testing method for gas turbine inlet air fogging.


Sign in / Sign up

Export Citation Format

Share Document