Design and Optimization of the Internal Cooling Channels of a HP Turbine Blade: Part I—Methodology

Author(s):  
Sergio Amaral ◽  
Tom Verstraete ◽  
Rene´ Van den Braembussche ◽  
Tony Arts

This first paper describes the Conjugate Heat Transfer (CHT) method and its application to the performance and lifetime prediction of a high pressure turbine blade operating at a very high inlet temperature. It is the analysis tool for the aerothermal optimization described in a second paper. The CHT method uses three separate solvers: a Navier-Stokes (NS) solver to predict the non-adiabatic external flow and heat flux, a Finite Element Analysis (FEA) to compute the heat conduction and stress within the solid, and a 1D aero-thermal model based on friction and heat transfer correlations for smooth and rib-roughened cooling channels. Special attention is given to the boundary conditions linking these solvers and to the stability of the complete CHT calculation procedure. The Larson-Miller parameter model is used to determine the creep-to-rupture failure lifetime of the blade. This model requires both the temperature and thermal stress inside the blade, calculated by the CHT and FEA. The CHT method is validated on two test cases: a gas turbine rotor blade without cooling and one with 5 cooling channels evenly distributed along the camber line. The metal temperature and thermal stress distribution in both blades are presented and the impact of the cooling channel geometry on lifetime is discussed.

2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Sergio Amaral ◽  
Tom Verstraete ◽  
René Van den Braembussche ◽  
Tony Arts

This first paper describes the conjugate heat transfer (CHT) method and its application to the performance and lifetime prediction of a high pressure turbine blade operating at a very high inlet temperature. It is the analysis tool for the aerothermal optimization described in a second paper. The CHT method uses three separate solvers: a Navier–Stokes solver to predict the nonadiabatic external flow and heat flux, a finite element analysis (FEA) to compute the heat conduction and stress within the solid, and a 1D aerothermal model based on friction and heat transfer correlations for smooth and rib-roughened cooling channels. Special attention is given to the boundary conditions linking these solvers and to the stability of the complete CHT calculation procedure. The Larson–Miller parameter model is used to determine the creep-to-rupture failure lifetime of the blade. This model requires both the temperature and thermal stress inside the blade, calculated by the CHT and FEA. The CHT method is validated on two test cases: a gas turbine rotor blade without cooling and one with five cooling channels evenly distributed along the camber line. The metal temperature and thermal stress distribution in both blades are presented and the impact of the cooling channel geometry on lifetime is discussed.


Author(s):  
C. Selcan ◽  
B. Cukurel ◽  
J. Shashank

In an attempt to investigate the acoustic resonance effect of serpentine passages on internal convection heat transfer, the present work examines a typical high pressure turbine blade internal cooling system, based on the geometry of the NASA E3 engine. In order to identify the associated dominant acoustic characteristics, a numerical FEM simulation (two-step frequency domain analysis) is conducted to solve the Helmholtz equation with and without source terms. Mode shapes of the relevant identified eigenfrequencies (in the 0–20kHz range) are studied with respect to induced standing sound wave patterns and the local node/antinode distributions. It is observed that despite the complexity of engine geometries, as a first order approximation, the predominant resonance behavior can be modeled by a same-ended straight duct. Therefore, capturing the physics observed in a generic geometry, the heat transfer ramifications are experimentally investigated in a scaled wind tunnel facility at a representative resonance condition. Focusing on the straight cooling channel’s longitudinal eigenmode in the presence of an isolated rib element, the impact of standing sound waves on convective heat transfer and aerodynamic losses are demonstrated by liquid crystal thermometry, local static pressure and sound level measurements. The findings indicate a pronounced heat transfer influence in the rib wake separation region, without a higher pressure drop penalty. This highlights the potential of modulating the aero-thermal performance of the system via acoustic resonance mode excitations.


Author(s):  
Akshay Khadse ◽  
Andres Curbelo ◽  
Ladislav Vesely ◽  
Jayanta S. Kapat

Abstract The first stage of turbine in a Brayton cycle faces the maximum temperature in the cycle. This maximum temperature may exceed creep temperature limit or even melting temperature of the blade material. Therefore, it becomes an absolute necessity to implement blade cooling to prevent them from structural damage. Turbine inlet temperatures for oxy-combustion supercritical CO2 (sCO2) are promised to reach blade material limit in near future foreseeing need of turbine blade cooling. Properties of sCO2 and the cycle parameters can make Reynolds number external to blade and external heat transfer coefficient to be significantly higher than those typically experience in regular gas turbines. This necessitates evaluation and rethinking of the internal cooling techniques to be adopted. The purpose of this paper is to investigate conjugate heat transfer effects within a first stage vane cascade of a sCO2 turbine. This study can help understand cooling requirements which include mass flow rate of leakage coolant sCO2 and geometry of cooling channels. Estimations can also be made if the cooling channels alone are enough for blade cooling or there is need for more cooling techniques such as film cooling, impingement cooling and trailing edge cooling. The conjugate heat transfer and aerodynamic analysis of a turbine cascade is carried out using STAR CCM+. The turbine inlet temperature of 1350K and 1775 K is considered for the study considering future potential needs. Thermo-physical properties of this mixture are given as input to the code in form of tables using REFPROP database. The blade material considered is Inconel 718.


Author(s):  
Shinjan Ghosh ◽  
Jayanta S. Kapat

Abstract Gas Turbine blade cooling is an important topic of research, as a high turbine inlet temperature (TIT) essentially means an increase in efficiency of gas turbine cycles. Internal cooling channels in gas turbine blades are key to the cooling and prevention of thermal failure of the material. Serpentine channels are a common feature in internal blade cooling. Optimization methods are often employed in the design of blade internal cooling channels to improve heat-transfer and reduce pressure drop. Topology optimization uses a variable porosity approach to manipulate flow geometries by adding or removing material. Such a method has been employed in the current work to modify the geometric configuration of a serpentine channel to improve total heat transferred and reduce the pressure drop. An in-house OpenFOAM solver has been used to create non-traditional geometries from two generic designs. Geometry-1 is a 2-D serpentine passage with an inlet and 4 bleeding holes as outlets for ejection into the trailing edge. Geometry-2 is a 3-D serpentine passage with an aspect ratio of 3:1 and consists of two 180-degree bends. The inlet velocity for both the geometries was used as 20 m/s. The governing equations employ a “Brinkman porosity parameter” to account for the porous cells in the flow domain. Results have shown a change in shape of the channel walls to enhance heat-transfer in the passage. Additive manufacturing can be employed to make such unconventional shapes.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Filippo Coletti ◽  
Tom Verstraete ◽  
Jérémy Bulle ◽  
Timothée Van der Wielen ◽  
Nicolas Van den Berge ◽  
...  

This two-part paper addresses the design of a U-bend for serpentine internal cooling channels optimized for minimal pressure loss. The total pressure loss for the flow in a U-bend is a critical design parameter, as it augments the pressure required at the inlet of the cooling system, resulting in a lower global efficiency. In the first part of the paper, the design methodology of the cooling channel was presented. In this second part, the optimized design is validated. The results obtained with the numerical methodology described in Part I are checked against pressure measurements and particle image velocimetry (PIV) measurements. The experimental campaign is carried out on a magnified model of a two-legged cooling channel that reproduces the geometrical and aerodynamical features of its numerical counterpart. Both the original profile and the optimized profile are tested. The latter proves to outperform the original geometry by about 36%, in good agreement with the numerical predictions. Two-dimensional PIV measurements performed in planes parallel to the plane of the bend highlight merits and limits of the computational model. Despite the well-known limits of the employed eddy viscosity model, the overall trends are captured. To assess the impact of the aerodynamic optimization on the heat transfer performance, detailed heat transfer measurements are carried out by means of liquid crystals thermography. The optimized geometry presents overall Nusselt number levels only 6% lower with respect to the standard U-bend. The study demonstrates that the proposed optimization method based on an evolutionary algorithm, a Navier–Stokes solver, and a metamodel of it is a valid design tool to minimize the pressure loss across a U-bend in internal cooling channels without leading to a substantial loss in heat transfer performance.


Author(s):  
Shian Li ◽  
Gongnan Xie ◽  
Bengt Sundén ◽  
Weihong Zhang

A problem involved in the increase of the turbine inlet temperature of gas turbine engine is the failure of material because of excessive thermal stresses. This requires cooling methods to withstand the increase of the inlet temperature. Rib turbulators are often used in the mid-section of internal cooling ducts to augment the heat transfer from blade wall to the coolant. This study numerically investigates side-wall heat transfer of a rectangular passage with the leading/trailing walls being roughened by staggered ribs whose length is less than the passage width. Such a passage corresponds to the internal cooling passage near the leading edge of a turbine blade. The inlet Reynolds number is ranging from 12,000 to 60,000. The detailed 3D fluid flow and heat transfer over the side-wall are presented. The overall performances of several ribbed passages are evaluated and compared. It is found that the side-wall heat transfer coefficients of the passage with truncated (continuous) ribs on opposite walls are about 20%–27% (28%–43%) higher than those of a passage without ribs, while the pressure loss could be reduced compared to a passage with continuous ribs. It is suggested that the usage of truncated ribs is a suitable way to augment the side-wall heat transfer and improve the flow structure near the leading edge.


Author(s):  
Harika S. Kahveci

Abstract One of the challenges in the design of a high-pressure turbine blade is that a considerable amount of cooling is required so that the blade can survive high temperature levels during engine operation. Another challenge is that the addition of cooling should not adversely affect blade aerodynamic performance. Besides, the tip region of a blade is exposed to further complexities due to tip leakage flow that is known to affect flow features and to cause additional pressure losses. The typical flat tips used in designs have evolved into squealer form that implements rims on the tip, which has been reported in several studies to achieve better heat transfer characteristics as well as to decrease pressure losses at the tip. This paper demonstrates a numerical study focusing on a squealer turbine blade tip that is operating in a turbine environment matching the typical design ratios of pressure, temperature and coolant blowing. The blades rotate at a realistic rpm and are subjected to a turbine rotor inlet temperature profile that has a nonuniform shape. For comparison, a uniform profile is also considered as it is typically used in computational studies for simplicity. The model used in the simulations is the tip section of the GE-E3 first stage blade. Two different configurations with and without cooling are considered using the same tip geometry. The cooled blade tip has seven holes on the tip floor lined up near the blade pressure side. The paper demonstrates the impact of the temperature profile nonuniformity and the addition of cooling on the complex blade tip flow field and heat transfer. Results confirm that these boundary conditions are the drivers for loss generation, and they further increase losses when combined. Temperature profile migration is not pronounced with a uniform profile, but shows distinct features with a nonuniform profile for which hot gas migration toward the blade pressure side is clearly observed. The blade tip also receives higher coolant coverage when subject to the nonuniform profile.


Author(s):  
Behnam Nouri ◽  
Knut Lehmann ◽  
Arnold Kühhorn

In the drive for higher cycle efficiencies in gas turbine engines, turbine blades are seeing an increasingly high heat load. This in turn demands improvements in the internal cooling system and a better understanding of both the level and distribution of the internal heat-transfer. A typical approach to enhance the internal cooling of the turbine blade is by casting angled ‘low blockage’ ribs on the walls of the cooling channels. The objective of the present paper is to determine the detailed Nusselt number distribution in rectangular internal channels with ribs. This knowledge can be used to guide the overall design e.g. to achieve high levels of heat-transfer where required. The effects of rotation as well as the interaction effects of the position and direction of ribs on opposite walls of the cooling channel have been investigated. Numerical calculations have been carried out using the commercial CFD code Fluent to investigate the local Nusselt number enhancement factor in rectangular ducts of different aspect ratios (0.5, 1 and 2) which have 45° or 90° angled ribs located on two opposite walls. This has been studied for different Rotation number Ro (0–0.45) and with a Reynolds number >30000. The first series of studies has been carried out with the same experimental setup as by Han [1]. The geometry was slightly changed to avoid the effect of high heat transfer at the entry. This study identifies important vortical structures, which are dependent on the direction and the position of the ribs. This has a profound effect on the distribution of heat-transfer within the passage. It is shown that the two smooth walls of the duct have different average Nusselt number ratio Nu/NuFD enhancement depending on the rib angle. In addition, based on numerical investigations, simple correlations have been developed for the rotational influence of the internal Nusselt number distribution. A major finding is that the effect of rotation is dominant for low aspect ratio channels and the local enhancement due to the rib position and angle is more dominant for high aspect ratio channels.


Author(s):  
Xinjun Wang ◽  
Wei Wang ◽  
Luke Chou ◽  
Yumeng Han ◽  
Liang Xu ◽  
...  

Numerical prediction of three-dimensional flow and heat transfer of air and steam are presented for serpentine cooling channels by using the commercial software CFX. The results show that SSG model is the best turbulence model for the ribbed channels. A study of Grid Generation was performed for flow and heat transfer in serpentine cooling channels, with the same turbulence model. And the results show that the space between the first node and the wall surface (Δy) is 0.0001 mm and the grid density is 1.3 or Δy of 0.001 mm and grid density of 1.2 is the appropriate choice for grid generation. Ribbed channels are not sensitive to mesh generation compared with smooth passages. With the same inlet flux, steam heat transfer efficiency is higher than that of air about 15–20%; steam superheat degree is not the key factor for heat transfer, but it had an effect on flow resistance. Compared with smooth channels, ribbed channels reduce the impact of the turn; the best heat transfer regions appear downstream of the turn. V-type ribs have better heat transfer performance than the parallel type ribs; the highest heat transfer occurs in the section between the ribs.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Jiang Luo ◽  
Eli H. Razinsky ◽  
Hee-Koo Moon

This paper presents a study using 3D computational fluid dynamics (CFD) based on Reynolds-averaged Navier-Stokes (RANS) equations to predict turbine gas-side heat transfer coefficients (HTC) on the entire airfoil and endwall. The CFD results at different spanwise sections and endwall have been compared with the flat-plate turbulent boundary layer correlation and with the data in a NASA turbine rotor passage with strong secondary flows, under three different flow conditions. The enhancement effects of secondary flow vortices on the blade surface and endwall heat transfer rate have been examined in detail. Analyses were conducted for the impact of Reynolds number and exit Mach number on heat transfer. The SST, k-ɛ, V2F, and realizable k-ɛ turbulence models have been assessed. The classical log-law wall-functions have been found to be comparable to the wall-integration methods but with much reduced sensitivity to inlet turbulence conditions. The migration of hot gas was simulated with a radial profile of inlet temperature. CFD results for mid-span HTCs of two other airfoils were also compared with test data. Overall, results are encouraging and indicate improved HTC and temperature predictions from 3D CFD could help optimize the design of turbine cooling schemes.


Sign in / Sign up

Export Citation Format

Share Document