Investigation of a Rotor Blade With Tip Cooling Subject to a Nonuniform Temperature Profile

Author(s):  
Harika S. Kahveci

Abstract One of the challenges in the design of a high-pressure turbine blade is that a considerable amount of cooling is required so that the blade can survive high temperature levels during engine operation. Another challenge is that the addition of cooling should not adversely affect blade aerodynamic performance. Besides, the tip region of a blade is exposed to further complexities due to tip leakage flow that is known to affect flow features and to cause additional pressure losses. The typical flat tips used in designs have evolved into squealer form that implements rims on the tip, which has been reported in several studies to achieve better heat transfer characteristics as well as to decrease pressure losses at the tip. This paper demonstrates a numerical study focusing on a squealer turbine blade tip that is operating in a turbine environment matching the typical design ratios of pressure, temperature and coolant blowing. The blades rotate at a realistic rpm and are subjected to a turbine rotor inlet temperature profile that has a nonuniform shape. For comparison, a uniform profile is also considered as it is typically used in computational studies for simplicity. The model used in the simulations is the tip section of the GE-E3 first stage blade. Two different configurations with and without cooling are considered using the same tip geometry. The cooled blade tip has seven holes on the tip floor lined up near the blade pressure side. The paper demonstrates the impact of the temperature profile nonuniformity and the addition of cooling on the complex blade tip flow field and heat transfer. Results confirm that these boundary conditions are the drivers for loss generation, and they further increase losses when combined. Temperature profile migration is not pronounced with a uniform profile, but shows distinct features with a nonuniform profile for which hot gas migration toward the blade pressure side is clearly observed. The blade tip also receives higher coolant coverage when subject to the nonuniform profile.

2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Harika S. Kahveci

Abstract One of the challenges in the design of a high-pressure turbine blade is that a considerable amount of cooling is required so that the blade can survive high temperature levels during engine operation. Another challenge is that the addition of cooling should not adversely affect blade aerodynamic performance. The typical flat tips used in designs have evolved into squealer form that implements rims on the tip, which has been reported in several studies to achieve better heat transfer characteristics as well as to decrease pressure losses at the tip. This paper demonstrates a numerical study focusing on a squealer turbine blade tip that is operating in a turbine environment matching the typical design ratios of pressure, temperature, and coolant blowing. The blades rotate at a realistic rpm and are subjected to a turbine rotor inlet temperature profile that has a nonuniform shape. For comparison, a uniform profile is also considered as it is typically used in computational studies for simplicity. The effect of tip cooling is investigated by implementing seven holes on the tip near the blade pressure side. Results confirm that the temperature profile nonuniformity and the addition of cooling are the drivers for loss generation, and they further increase losses when combined. Temperature profile migration is not pronounced with a uniform profile but shows distinct features with a nonuniform profile for which hot gas migration toward the blade pressure side is observed. The blade tip also receives higher coolant coverage when subject to the nonuniform profile.


Author(s):  
K. Anto ◽  
S. Xue ◽  
W. F. Ng ◽  
L. J. Zhang ◽  
H. K. Moon

This study focuses on local heat transfer characteristics on the tip and near-tip regions of a turbine blade with a flat tip, tested under transonic conditions in a stationary, 2-D linear cascade with high freestream turbulence. The experiments were conducted at the Virginia Tech transonic blow-down wind tunnel facility. The effects of tip clearance and exit Mach number on heat transfer distribution were investigated on the tip surface using a transient infrared thermography technique. In addition, thin film gages were used to study similar effects in heat transfer on the near-tip regions at 94% height based on engine blade span of the pressure and suction sides. Surface oil flow visualizations on the blade tip region were carried-out to shed some light on the leakage flow structure. Experiments were performed at three exit Mach numbers of 0.7, 0.85, and 1.05 for two different tip clearances of 0.9% and 1.8% based on turbine blade span. The exit Mach numbers tested correspond to exit Reynolds numbers of 7.6 × 105, 9.0 × 105, and 1.1 × 106 based on blade true chord. The tests were performed with a high freestream turbulence intensity of 12% at the cascade inlet. Results at 0.85 exit Mach showed that an increase in the tip gap clearance from 0.9% to 1.8% translates into a 3% increase in the average heat transfer coefficients on the blade tip surface. At 0.9% tip clearance, an increase in exit Mach number from 0.85 to 1.05 led to a 39% increase in average heat transfer on the tip. High heat transfer was observed on the blade tip surface near the leading edge, and an increase in the tip clearance gap and exit Mach number augmented this near-leading edge tip heat transfer. At 94% of engine blade height on the suction side near the tip, a peak in heat transfer was observed in all test cases at s/C = 0.66, due to the onset of a downstream leakage vortex, originating from the pressure side. An increase in both the tip gap and exit Mach number resulted in an increase, followed by a decrease in the near-tip suction side heat transfer. On the near-tip pressure side, a slight increase in heat transfer was observed with increased tip gap and exit Mach number. In general, the suction side heat transfer is greater than the pressure side heat transfer, as a result of the suction side leakage vortices.


Author(s):  
Qihe Huang ◽  
Jiao Wang ◽  
Lei He ◽  
Qiang Xu

A numerical study is performed to simulate the tip leakage flow and heat transfer on the first stage rotor blade tip of GE-E3 turbine, which represents a modern gas turbine blade geometry. Calculations consist of the flat blade tip without and with film cooling. For the flat tip without film cooling case, in order to investigate the effect of tip gap clearance on the leakage flow and heat transfer on the blade tip, three different tip gap clearances of 1.0%, 1.5% and 2.5% of the blade span are considered. And to assess the performance of the turbulence models in correctly predicting the blade tip heat transfer, the simulations have been performed by using four different models (the standard k-ε, the RNG k-ε, the standard k-ω and the SST models), and the comparison shows that the standard k-ω model provides the best results. All the calculations of the flat tip without film cooling have been compared and validated with the experimental data of Azad[1] and the predictions of Yang[2]. For the flat tip with film cooling case, three different blowing ratio (M = 0.5, 1.0, and 1.5) have been studied to the influence on the leakage flow in tip gap and the cooling effectiveness on the blade tip. Tip film cooling can largely reduce the overall heat transfer on the tip. And the blowing ratio M = 1.0, the cooling effect for the blade tip is the best.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Sergen Sakaoglu ◽  
Harika S. Kahveci

Abstract The pressure difference between suction and pressure sides of a turbine blade leads to tip leakage flow, which adversely affects the first-stage high-pressure (HP) turbine blade tip aerodynamics. In modern gas turbines, HP turbine blade tips are exposed to extreme thermal conditions requiring cooling. If the coolant jet directed into the blade tip gap cannot counter the leakage flow, it will simply add up to the pressure losses due to leakage. Therefore, the compromise between the aerodynamic loss and the gain in tip-cooling effectiveness must be optimized. In this paper, the effect of tip-cooling configuration on the turbine blade tip is investigated numerically from both aerodynamics and thermal aspects to determine the optimum configuration. Computations are performed using the tip cross section of GE-E3 HP turbine first-stage blade for squealer and flat tips, where the number, location, and diameter of holes are varied. The study presents a discussion on the overall loss coefficient, total pressure loss across the tip clearance, and variation in heat transfer on the blade tip. Increasing the coolant mass flow rate using more holes or by increasing the hole diameter results in a decrease in the area-averaged Nusselt number on the tip floor. Both aerodynamic and thermal response of squealer tips to the implementation of cooling holes is superior to their flat counterparts. Among the studied configurations, the squealer tip with a larger number of cooling holes located toward the pressure side is highlighted to have the best cooling performance.


2019 ◽  
Vol 15 (6) ◽  
pp. 1121-1135
Author(s):  
Fujuan Tong ◽  
Wenxuan Gou ◽  
Lei Li ◽  
Zhufeng Yue ◽  
Wenjing Gao ◽  
...  

Purpose In order to improve the engine reliability and efficiency, an effective way is to reform the turbine blade tip conformation. The paper aims to discuss this issue. Design/methodology/approach The present research provides several novel tip-shaping structures, which are considered to control the blade tip loss. Four different tip geometries have been studied: flat tip, squealer tip, flat tip with streamwise ribs and squealer tip with streamwise ribs. The tip heat transfer and leakage flow are both analyzed in detail, for example the tip heat transfer coefficient, tip flow and local pressure distributions. Findings The results show that the squealer seal and streamwise rib can reduce the tip heat transfer and leakage loss, especially for the squealer tip with streamwise ribs. The tip and near-tip flow patterns at the different locations of axial chord reflect that both the squealer seal and streamwise rib structure can control the tip leakage flow loss. In addition, the analysis of the aerodynamic parameters (the static pressure and turbine efficiency) also indicates that the squealer tip with streamwise ribs obtains the highest adiabatic efficiency with an increase of 2.34 percent, compared with that of the flat tip case. Originality/value The analysis of aerothermal and dynamic performance can provide a reference for the blade tip design and treatment.


Author(s):  
Arun K. Saha ◽  
Sumanta Acharya ◽  
Chander Prakash ◽  
Ron Bunker

A numerical study has been conducted to explore the effect of a pressure-side winglet on the flow and heat transfer over a blade tip. Calculations are performed for both a flat tip and a squealer tip. The winglet is in the form of a flat extension, and is shaped in the axial chord direction to have the maximum thickness at the chord location where the pressure difference is the largest between the pressure and suction sides. For the flat tip, the pressure side winglet exhibits a significant reduction in the leakage flow strength and an associated reduction in the aerodynamic loss. The low heat transfer coefficient “sweet-spot” region is larger with the pressure-side winglet, and lower heat transfer coefficients are also observed along the pressure side of the blade. The winglet reduces the average heat transfer coefficient by about 7%. In the presence of a squealer, the role of the winglet decreases significantly, and only a 0.5% reduction in the pressure ratio is achieved with the winglet with virtually no reduction in the average heat transfer coefficient.


2002 ◽  
Vol 124 (3) ◽  
pp. 452-459 ◽  
Author(s):  
Gm Salam Azad ◽  
Je-Chin Han ◽  
Ronald S. Bunker ◽  
C. Pang Lee

This study investigates the effect of a squealer tip geometry arrangement on heat transfer coefficient and static pressure distributions on a gas turbine blade tip in a five-bladed stationary linear cascade. A transient liquid crystal technique is used to obtain detailed heat transfer coefficient distribution. The test blade is a linear model of a tip section of the GE E3 high-pressure turbine first stage rotor blade. Six tip geometry cases are studied: (1) squealer on pressure side, (2) squealer on mid camber line, (3) squealer on suction side, (4) squealer on pressure and suction sides, (5) squealer on pressure side plus mid camber line, and (6) squealer on suction side plus mid camber line. The flow condition during the blowdown tests corresponds to an overall pressure ratio of 1.32 and exit Reynolds number based on axial chord of 1.1×106. Results show that squealer geometry arrangement can change the leakage flow and results in different heat transfer coefficients to the blade tip. A squealer on suction side provides a better benefit compared to that on pressure side or mid camber line. A squealer on mid camber line performs better than that on a pressure side.


Author(s):  
Brian M. T. Tang ◽  
Pepe Palafox ◽  
David R. H. Gillespie ◽  
Martin L. G. Oldfield ◽  
Brian C. Y. Cheong

Control of over-tip leakage flow between turbine blade tips and the stationary shroud is one of the major challenges facing gas turbine designers today. The flow imposes large thermal loads on unshrouded high pressure turbine blades and is significantly detrimental to turbine blade life. This paper presents results from a computational study performed to investigate the detailed blade tip heat transfer on a sharp-edged, flat tip HP turbine blade. The tip gap is engine representative at 1.5% of the blade chord. Nusselt number distributions on the blade tip surface have been obtained from steady flow simulations and are compared to experimental data carried out in a super-scale cascade, which allows detailed flow and heat transfer measurements in stationary and engine representative conditions. Fully structured, multiblock hexahedral meshes were used in the simulations, performed in the commercial solver Fluent. Seven industry-standard turbulence models, and a number of different tip gridding strategies are compared, varying in complexity from the one-equation Spalart-Allmaras model to a seven-equation Reynolds Stress model. Of the turbulence models examined, the standard k-ω model gave the closest agreement to the experimental data. The discrepancy in Nusselt number observed was just 5%. However, the size of the separation on the pressure side rim was underpredicted, causing the position of reattachment to occur too close to the edge. Other turbulence models tested typically underpredicted Nusselt numbers by around 35%, although locating the position of peak heat flux correctly. The effect of the blade to casing motion was also simulated successfully, qualitatively producing the same changes in secondary flow features as were previously observed experimentally, with associated changes in heat transfer to the blade tip.


Author(s):  
Sergen Sakaoglu ◽  
Harika S. Kahveci

Abstract The pressure difference between suction and pressure sides of a turbine blade leads to the so-called phenomenon, the tip leakage flow, which most adversely affects the first-stage high-pressure (HP) turbine blade tip aerodynamics. In modern gas turbines, HP turbine blade tips are also exposed to extreme thermal conditions requiring the use of tip cooling. If the coolant jet directed into the blade tip gap cannot counter the leakage flow, it will simply add up to the pressure losses due to this leakage flow. Therefore, it is necessary to handle the design of tip cooling in such a way that the compromise between the aerodynamic loss and the gain in the tip cooling effectiveness is optimized. In this paper, the effect of tip cooling configuration on the turbine blade tip is investigated numerically both from the aerodynamics and thermal aspects in order to determine the optimum tip cooling configuration. The studies are carried out using the tip cross-section of General Electric E3 (Energy Efficient Engine) HP turbine first-stage blade for two different tip geometries, squealer tip and flat tip, where the number, location, and diameter of the cooling holes are varied. The study presents a discussion on the overall loss coefficient, the total pressure loss across the tip clearance, and the variation of heat transfer on the blade tip. The aerodynamic and heat transfer results are compared with the experimental data from literature. It is observed that increasing the coolant mass flow rate by using more holes or by increasing the hole diameter results in a decrease in the area-averaged Nusselt number on the tip floor, as expected. The findings show that both aerodynamic and thermal response of the squealer tips to the implementation of cooling holes is superior to their flat counterparts. Among the studied configurations, the squealer tip with larger number of cooling holes located towards the pressure side is highlighted as the configuration having the best cooling performance.


Sign in / Sign up

Export Citation Format

Share Document