Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner

Author(s):  
Thomas Komarek ◽  
Wolfgang Polifke

Combustion instabilities represent a long known problem in combustion technology. The complex interactions between acoustics and turbulent swirling flames are not fully understood yet, making it very difficult to reliably predict the stability of new combustion systems. For example, the effects of fluctuations of swirl number on the heat release of the flame have to be investigated in more detail. In this paper a perfectly premixed, swirl stabilized burner with variable axial position of the swirl generator is investigated. In experiments, the position of the swirl generator has a strong impact on the dynamic flame response, although it does not influence the time-averaged distribution of the heat release significantly. This phenomenon is further investigated, using computational fluid dynamics combined with system identification. The generation of fluctuations of swirl number, their propagation to the flame, and their effect on the dynamic flame response are examined. A simple model based on convective time lags is developed, showing good agreement with experiments.

Author(s):  
Thomas Komarek ◽  
Wolfgang Polifke

Combustion instabilities represent a long known problem in combustion technology. The complex interactions between acoustics and turbulent swirling flames are not fully understood yet, making it very difficult to reliably predict the stability of new combustion systems. For example, the effects of fluctuations of swirl number on the heat release of the flame have to be investigated in more detail. In this paper a perfectly premixed swirl stabilized burner with variable axial position of the swirl generator is investigated. In experiments, the position of the swirl generator has a strong impact on the dynamic flame response, although it does not influence the time-averaged distribution of the heat release significantly. This phenomenon is further investigated using computational fluid dynamics combined with system identification. The generation of fluctuations of swirl number, their propagation to the flame, and their effect on the dynamic flame response are examined. A simple model based on convective time lags is developed, showing good agreement with experiments.


Author(s):  
Uyi Idahosa ◽  
Saptarshi Basu ◽  
Ankur Miglani

This paper reports an experimental investigation of dynamic response of nonpremixed atmospheric swirling flames subjected to external, longitudinal acoustic excitation. Acoustic perturbations of varying frequencies (fp = 0–315 Hz) and velocity amplitudes (0.03 ≤ u′/Uavg ≤ 0.30) are imposed on the flames with various swirl intensities (S = 0.09 and 0.34). Flame dynamics at these swirl levels are studied for both constant and time-dependent fuel flow rate configurations. Heat release rates are quantified using a photomultiplier (PMT) and simultaneously imaged with a phase-locked CCD camera. The PMT and CCD camera are fitted with 430 nm ±10 nm band pass filters for CH* chemiluminescence intensity measurements. Flame transfer functions and continuous wavelet transforms (CWT) of heat release rate oscillations are used in order to understand the flame response at various burner swirl intensity and fuel flow rate settings. In addition, the natural modes of mixing and reaction processes are examined using the magnitude squared coherence analysis between major flame dynamics parameters. A low-pass filter characteristic is obtained with highly responsive flames below forcing frequencies of 200 Hz while the most significant flame response is observed at 105 Hz forcing mode. High strain rates induced in the flame sheet are observed to cause periodic extinction at localized regions of the flame sheet. Low swirl flames at lean fuel flow rates exhibit significant localized extinction and re-ignition of the flame sheet in the absence of acoustic forcing. However, pulsed flames exhibit increased resistance to straining due to the constrained inner recirculation zones (IRZ) resulting from acoustic perturbations that are transmitted by the co-flowing air. Wavelet spectra also show prominence of low frequency heat release rate oscillations for leaner (C2) flame configurations. For the time-dependent fuel flow rate flames, higher un-mixedness levels at lower swirl intensity is observed to induce periodic re-ignition as the flame approaches extinction. Increased swirl is observed to extend the time-to-extinction for both pulsed and unpulsed flame configurations under time-dependent fuel flow rate conditions.


2017 ◽  
Vol 830 ◽  
pp. 681-707 ◽  
Author(s):  
Paul Palies ◽  
Milos Ilak ◽  
Robert Cheng

Premixed low swirling flames (methane–air and hydrogen–methane–air) are experimentally investigated for three different regimes. Stable, local transient to instability and limit cycle regimes corresponding to three distinct equivalence ratios are considered. Dynamic mode decomposition is applied to the hydrogen–air–methane flame to retrieve the modes frequencies, growth rates and spatial distributions for each regime. The results indicate that a vortical wave propagating along the flame front is associated with the transition from stability to instability. In addition, it is shown that a key effect on stability is the location of the non-oscillating (0 Hz) flame component. The phase-averaged unsteady motion of the flames over one cycle of oscillation shows the vortical wave rolling up the flame front. The Rayleigh index maps are formed to identify the region of driving and damping of the self-sustained oscillation, while the flame transfer function phase leads to the propagation mode of the perturbations along the flame front. The second mechanism identified concerns the swirl number fluctuation induced by the mode conversion. By utilizing hypotheses for the flow field and the flame structure, it is pointed out that those mechanisms are at work for both flames (methane–air and hydrogen–methane–air) and their effects on the unsteady heat release are determined. Both unsteady heat release contributions, the vortical wave induces flame surface fluctuations and swirl number oscillation induces unsteady turbulent burning velocity, are in phase opposition and of similar amplitudes.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2941
Author(s):  
Wojciech Tutak ◽  
Arkadiusz Jamrozik ◽  
Karol Grab-Rogaliński

The main objective of this study was assessment of the performance, emissions and combustion characteristics of a diesel engine using RME–1-butanol blends. In assessing the combustion process, great importance was placed on evaluating the stability of this process. Not only were the typical COVIMEP indicators assessed, but also the non-burnability of the characteristic combustion stages: ignition delay, time of 50% heat release and the end of combustion. The evaluation of the combustion process based on the analysis of heat release. The tests carried out on a 1-cylinder diesel engine operating at a constant load. Research and evaluation of the combustion process of a mixture of RME and 1-butanol carried out for the entire range of shares of both fuels up to 90% of 1-butanol energetic fraction. The participation of butanol in combustion process with RME increased the in-cylinder peak pressure and the heat release rate. With the increase in the share of butanol there was noted a decrease in specific energy consumption and an increase in engine efficiency. The share of butanol improved the combustion stability. There was also an increase in NOx emissions and decrease in CO and soot emissions. The engine can be power by blend up to 80% energy share of butanol.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1657
Author(s):  
Karolina Östbring ◽  
María Matos ◽  
Ali Marefati ◽  
Cecilia Ahlström ◽  
Gemma Gutiérrez

Rapeseed press cake (RPC), the by-product of rapeseed oil production, contains proteins with emulsifying properties, which can be used in food applications. Proteins from industrially produced RPC were extracted at pH 10.5 and precipitated at pH 3 (RPP3) and 6.5 (RPP6.5). Emulsions were formulated at three different pHs (pH 3, 4.5, and 6) with soy lecithin as control, and were stored for six months at either 4 °C or 30 °C. Zeta potential and droplet size distribution were analyzed prior to incubation, and emulsion stability was assessed over time by a Turbiscan instrument. Soy lecithin had significantly larger zeta potential (−49 mV to 66 mV) than rapeseed protein (−19 mV to 20 mV). Rapeseed protein stabilized emulsions with smaller droplets at pH close to neutral, whereas soy lecithin was more efficient at lower pHs. Emulsions stabilized by rapeseed protein had higher stability during storage compared to emulsions prepared by soy lecithin. Precipitation pH during the protein extraction process had a strong impact on the emulsion stability. RPP3 stabilized emulsions with higher stability in pHs close to neutral, whereas the opposite was found for RPP6.5, which stabilized more stable emulsions in acidic conditions. Rapeseed proteins recovered from cold-pressed RPC could be a suitable natural emulsifier and precipitation pH can be used to monitor the stability in emulsions with different pHs.


Author(s):  
Vishal Acharya ◽  
Timothy Lieuwen

Flow oscillations associated with hydrodynamic instabilities comprise a key element of the feedback loop during self-excited combustion driven oscillations. This work is motivated in particular by the question of how to scale thermoacoustic stability results from single nozzle or sector combustors to full scale systems. Specifically, this paper considers the response of non-axisymmetric flames to helical flow disturbances of the form u^i′∝expimθ where m denotes the helical mode number. This work closely follows prior studies of the response of axisymmetric flames to helical disturbances. In that case, helical modes induce strong flame wrinkling, but only the axisymmetric, m = 0 mode, leads to fluctuations in overall flame surface area and, therefore, heat release. All other helical modes induce local area/heat release fluctuations with azimuthal phase variations that cancel each other out when integrated over all azimuthal angles. However, in the case of mean flame non-axisymmetries, the azimuthal deviations on the mean flame surface inhibit such cancellations and the asymmetric helical modes (m ≠ 0) cause a finite global flame response. In this paper, a theoretical framework for non-axisymmetric flames is developed and used to illustrate how the flame shape influences which helical modes lead to net flame surface area fluctuations. Example results are presented which illustrate the contributions made by these asymmetric helical modes to the global flame response and how this varies with different control parameters such as degree of asymmetry in the mean flame shape or Strouhal number. Thus, significantly different sensitivities may be observed in single and multi-nozzle flames in otherwise identical hardware in flows with strong helical disturbances, if there are significant deviations in time averaged flame shape between the two, particularly if one of the cases is nearly axisymmetric.


Author(s):  
M. Gatti ◽  
R. Gaudron ◽  
C. Mirat ◽  
L. Zimmer ◽  
T. Schuller

The frequency response of premixed swirled flames is investigated by comparing their Transfer Function (FTF) between velocity and heat release rate fluctuations. The equivalence ratio and flow velocity are kept constant and four different swirling injectors are tested with increasing swirl numbers. The first injector features a vanishing low swirl number S = 0.20 and produces a flame anchored by the recirculating flow in the wake of a central bluff body. The three other swirling injectors produce highly swirled flows (S > 0.6) leading to a much larger internal recirculation region, which size increases with the swirl level. When operating the burner at S = 0.20, the FTF gain curve smoothly increases to reach a maximum and then smoothly decreases towards zero. For the highly swirled flames (S > 0.6), the FTF gain curve shows a succession of valleys and peaks attributed to interferences between axial and azimuthal velocity fluctuations at the injector outlet. The FTF phase-lag curves from the vanishing low and highly swirled flames are the same at low frequencies despite their large differences in flame length and flame aspect ratio. Deviations between the FTF phase lag curves of the different swirled flames start above the frequency corresponding to the first valley in the FTF gain of the highly swirled flames. Phase averaged images of the axial flow fields and of the flame chemiluminescence are used to interpret these features. At forcing frequencies corresponding to peak FTF gain values, the cold flow response of all flames investigated is dominated by large coherent vortical structures shed from the injector lip. At forcing frequencies corresponding to a valley in the FTF gain curve of the highly swirled flames, the formation of large coherent structures is strongly hindered in the cold flow response. These observations contrast with previous interpretations of the mechanisms associated to the low FTF response of swirled flames. It is finally found that for flames stabilized with a large swirl number, heat release rate fluctuations result both from large flame luminosity oscillations and large flame volume oscillations. For conditions leading to a small FTF gain value, both the flame luminosity and flame volume fluctuations are suppressed confirming the absence of strong perturbations within the flow at these frequencies. The experiments made in this work reveal a purely hydrodynamic mechanism at the origin of the low response of swirling flames at certain specific frequencies.


Author(s):  
Vishal Acharya ◽  
Tim Lieuwen

Abstract Premixed flames are sensitive to flow disturbances, which can arise from acoustic or vortical fluctuations. For transverse instabilities, it is known that a dominant mechanism for flame response is “injector coupling”, whereby pressure oscillations associated with transverse waves excite axial flow disturbances. These axial flow disturbances then excite heat release oscillations. The objective of this paper is to consider another mechanism — the direct sensitivity of the unsteady heat release to transverse acoustic waves, and to compare its significance relative to the induced axial disturbances, in a linear framework. The rate at which the flame adds energy to the disturbance field is quantified using the Rayleigh criterion and evaluated over a range of control parameters, such as flame length and swirl number. The results show that radial modes induce heat release fluctuations that always add energy to the acoustic field, whereas heat release fluctuations induced by mixed radial-azimuthal modes can add or remove energy. These amplification rates are then compared to the flame response from induced axial fluctuations. For combustor centered flames, these results show that the direct excitation mechanism has negligible amplification rates relative to the induced axial mechanism for radial modes. For transverse modes, the fact that the nozzle is located at a pressure node indicates that negligible induced axial velocity disturbances are excited; as such, the direct mechanism dominates. For flames that are not centered on pressure nodes, the direct mechanism for mixed-modes, dominates for certain nozzle locations and flame angles.


2019 ◽  
Vol 879 ◽  
pp. 85-120 ◽  
Author(s):  
Alp Albayrak ◽  
Matthew P. Juniper ◽  
Wolfgang Polifke

Thermo-acoustic combustion instabilities arise from feedback between flow perturbations and the unsteady heat release rate of a flame in a combustion chamber. In the case of a premixed, swirl stabilized flame, an unsteady heat release rate results from acoustic velocity perturbations at the burner inlet on the one hand, and from azimuthal velocity perturbations, which are generated by acoustic waves propagating across the swirler, on the other. The respective time lags associated with these flow–flame interaction mechanisms determine the overall flame response to acoustic perturbations and therefore thermo-acoustic stability. The propagation of azimuthal velocity perturbations in a cylindrical duct is commonly assumed to be convective, which implies that the corresponding time lag is governed by the speed of convection. We scrutinize this assumption in the framework of small perturbation analysis and modal decomposition of the Euler equations by considering an initial value problem. The analysis reveals that azimuthal velocity perturbations in swirling flows should be regarded as dispersive inertial waves. As a result of the restoring Coriolis force, wave propagation speeds lie above and below the mean flow bulk velocity. The differences between wave propagation speed and convection speed increase with increasing swirl. A linear, time invariant step response solution for the dynamics of inertial waves is developed, which can be approximated by a concise analytical expression. This study enhances the understanding of the flame dynamics of swirl burners in particular, and contributes physical insight into the inertial wave dynamics in general.


Author(s):  
Brian Jones ◽  
Jong Guen Lee ◽  
Bryan D. Quay ◽  
Domenic A. Santavicca

The response of turbulent premixed flames to inlet velocity fluctuations is studied experimentally in a lean premixed, swirl-stabilized, gas turbine combustor. Overall chemiluminescence intensity is used as a measure of the fluctuations in the flame’s global heat release rate, and hot wire anemometry is used to measure the inlet velocity fluctuations. Tests are conducted over a range of mean inlet velocities, equivalence ratios, and velocity fluctuation frequencies, while the normalized inlet velocity fluctuation (V′/Vmean) is fixed at 5% to ensure linear flame response over the employed modulation frequency range. The measurements are used to calculate a flame transfer function relating the velocity fluctuation to the heat release fluctuation as a function of the velocity fluctuation frequency. At low frequency, the gain of the flame transfer function increases with increasing frequency to a peak value greater than 1. As the frequency is further increased, the gain decreases to a minimum value, followed by a second smaller peak. The frequencies at which the gain is minimum and achieves its second peak are found to depend on the convection time scale and the flame’s characteristic length scale. Phase-synchronized CH∗ chemiluminescence imaging is used to characterize the flame’s response to inlet velocity fluctuations. The observed flame response can be explained in terms of the interaction of two flame perturbation mechanisms, one originating at flame-anchoring point and propagating along the flame front and the other from vorticity field generated in the outer shear layer in the annular mixing section. An analysis of the phase-synchronized flame images show that when both perturbations arrive at the flame at the same time (or phase), they constructively interfere, producing the second peak observed in the gain curves. When the perturbations arrive at the flame 180 degrees out-of-phase, they destructively interfere, producing the observed minimum in the gain curve.


Sign in / Sign up

Export Citation Format

Share Document