Thermoeconomic Analysis of Micro Gas Turbine Design in the Range 25–500 kWe

Author(s):  
Leandro Galanti ◽  
Aristide F. Massardo

The main aim of this paper is the thermoeconomic analysis of micro gas turbines in the range 25–500 kWe. This thermoeconomic analysis is based on the Thermoeconomic Functional Analysis (TFA) approach developed by the Authors over the last twenty years and is strongly related to the need for minimizing of the specific capital cost which is still considered high, and for optimizing MGT size to match customers’ needs. The investigation has been carried out using WTEMP code (Web-based ThermoEconomic Modular Program), developed by the Thermochemical Power Group of the University of Genoa [1][2][3]. The thermoeconomic analysis was performed on the basis of the thermodynamic, geometric and capital cost parameters of the main MGT devices (i.e. recuperator effectiveness, turbine inlet temperature, compressor pressure ratio, etc.) and on the economic scenario (fuel costs, cost of electricity, etc.). The subjects of the analysis were the existing Regenerative MGT (R-MGT) cycles [4][5] and new Inter-cooled Regenerative (ICR-MGT) cycles; for the sake of simplicity in this study, the economic value of heat in the case with CHP configuration was not considered.

1971 ◽  
Vol 93 (1) ◽  
pp. 28-32
Author(s):  
M. M. Nagib

An appreciable improvement in the performance of gas turbines operating with ambient temperatures above 90 deg F could be achieved by combining an absorption-refrigeration unit to the power cycle. The thermal energy in the exhaust gases from the turbine is used to operate the refrigeration unit, which in turn cools the air prior to entering the compressor. This reduction in compressor-inlet temperature results an average improvement of about 7–9 points in the thermal efficiency of the combined cycle as well as an increase in the specific output. The analysis includes the effect of different cycle parameters such as compressor pressure ratio, maximum cycle temperature, and regeneration.


Author(s):  
M. Zockel

A quasi-steady-state analysis is made of the performance of a gas-turbine working with intermittent, constant volume combustion. Variables considered include inlet temperature, compressor pressure ratio, scavenge ratio, combustion time, heat exchanger thermal ratio. Characteristics are computed over a full loading range. Computations are based on turbines having the following behavior: (a) constant turbine efficiency, (b) characteristics of a multistage axial turbine, and (c) characteristics of a single-stage radial turbine. The analysis indicates that the constant volume gas turbine has advantages in thermal efficiency, specific power and part load performance over constant pressure gas turbines operating at the same compressor pressure ratio and turbine inlet temperature. However, the addition of a heat exchanger shows less advantage when applied to a constant volume than to a constant pressure engine.


2018 ◽  
Vol 35 (2) ◽  
pp. 137-147 ◽  
Author(s):  
Antonios Fatsis

Abstract Wave rotors are rotating equipment designed to exchange energy between high and low enthalpy fluids by means of unsteady pressure waves. In turbomachinery, they can be used as topping devices to gas turbines aiming to improve performance. The integration of a wave rotor into a ground power unit is far more attractive than into an aeronautical application, since it is not accompanied by any inconvenience concerning the over-weight and extra dimensioning. Two are the most common types of ground industrial gas turbines: The one-shaft and the two-shaft engines. Cycle analysis for both types of gas turbine engines topped with a four-port wave rotor is calculated and their performance is compared to the performance of the baseline engine accordingly. It is concluded that important benefits are obtained in terms of specific work and specific fuel consumption, especially compared to baseline engines with low compressor pressure ratio and low turbine inlet temperature.


Author(s):  
Ibrahim Sinan Akmandor ◽  
O¨zhan O¨ksu¨z ◽  
Sec¸kin Go¨kaltun ◽  
Melih Han Bilgin

A new methodology is developed to find the optimal steam injection levels in simple and combined cycle gas turbine power plants. When steam injection process is being applied to simple cycle gas turbines, it is shown to offer many benefits, including increased power output and efficiency as well as reduced exhaust emissions. For combined cycle power plants, steam injection in the gas turbine, significantly decreases the amount of flow and energy through the steam turbine and the overall power output of the combined cycle is decreased. This study focuses on finding the maximum power output and efficiency of steam injected simple and combined cycle gas turbines. For that purpose, the thermodynamic cycle analysis and a genetic algorithm are linked within an automated design loop. The multi-parameter objective function is either based on the power output or on the overall thermal efficiency. NOx levels have also been taken into account in a third objective function denoted as steam injection effectiveness. The calculations are done for a wide range of parameters such as compressor pressure ratio, turbine inlet temperature, air and steam mass flow rates. Firstly, 6 widely used simple and combined cycle power plants performance are used as test cases for thermodynamic cycle validation. Secondly, gas turbine main parameters are modified to yield the maximum generator power and thermal efficiency. Finally, the effects of uniform crossover, creep mutation, different random number seeds, population size and the number of children per pair of parents on the performance of the genetic algorithm are studied. Parametric analyses show that application of high turbine inlet temperature, high air mass flow rate and no steam injection lead to high power and high combined cycle thermal efficiency. On the contrary, when NOx reduction is desired, steam injection is necessary. For simple cycle, almost full amount of steam injection is required to increase power and efficiency as well as to reduce NOx. Moreover, it is found that the compressor pressure ratio for high power output is significantly lower than the compressor pressure ratio that drives the high thermal efficiency.


Author(s):  
Vyacheslav V. Romanov ◽  
Sergey N. Movchan ◽  
Vladimir N. Chobenko ◽  
Oleg S. Kucherenko ◽  
Valeriy V. Kuznetsov ◽  
...  

Adding an exhaust gas heat recovery system to a gas turbine (GT) increases its overall power output and efficiency. The introduction of an Air Heat Recovery Turbine Unit (AHRTU) using air as the heat-transfer agent is one of the ways of this increasing. This article presents the results of a GT with AHRTU for a turbine inlet temperature range from 573K to 873K and a compressor pressure ratio from 2.5 to 12. Main component performance of the AHRTU, weight and size are determined and optimized to match gas turbines. The potential for use of GT with AHRTU is specified. Exhaust gas heat recovery using a GT with AHRTU enable 4%–6% increases in efficiency (absolute), and 12%–20% increases in power output of mechanical drive plants.


Author(s):  
B. Herrmann

On basis of ISO-Standard 2314, the German Standard Organisation (DIN) has prepared the German Standard DIN 4341, which deals with acceptance tests for gas turbines. Sample calculations have been included. In connection with the development of the sample calculations a new diagram for thermodynamic properties of air and products of combustion was developed on basis of -humid air as per ISO standard 2314 -standard gaseous fuel -standard liquid fuel This diagram allows exact calculation of performance data. Further, a simplified but relatively acurate formula is presented for calculating the turbine inlet temperature on basis of -compressor pressure ratio -exhaust gas temperature -thermal efficiency Development and limitation of this formula is presented.


Author(s):  
O. Dessornes ◽  
S. Landais ◽  
R. Valle ◽  
A. Fourmaux ◽  
S. Burguburu ◽  
...  

To reduce the size and weight of power generation machines for portable devices, several systems to replace the currently used heavy batteries are being investigated worldwide. As micro gas turbines are expected to offer the highest power density, several research groups launched programs to develop ultra micro gas turbines: IHI firm (Japan), PowerMEMS Consortium (Belgium). At Onera, a research program called DecaWatt is under development in order to realize a demonstrator of a micro gas turbine engine in the 50 to 100 Watts electrical power range. A single-stage gas turbine is currently being studied. First of all, a calculation of the overall efficiency of the micro gas turbine engine has been carried out according to the pressure ratio, the turbine inlet temperature and the compressor and turbine efficiencies. With realistic hypotheses, we could obtain an overall efficiency of about 5% to 10% which leads to around 200 W/kg when taking into account the mass of the micro gas turbine engine, its electronics, fuel and packaging. Moreover, the specific energy could be in the range 300 to 600 Wh/kg which exceeds largely the performance of secondary batteries. To develop such a micro gas turbine engine, experimental and computational work focused on: • a 10 mm in diameter centrifugal compressor, with the objective to obtain a pressure ratio of about 2.5 • a radial inflow turbine • journal and thrust gas bearings (lobe bearings and spiral grooves) and their manufacturing • a small combustor working with hydrogen or hydrocarbon gaseous fuel (propane) • a high rotation speed micro-generator • the choice of materials Components of this tiny engine were tested prior to the test with all the parts assembled together. Tests of the generator at 700,000 rpm showed a very good efficiency of this component. In the same way, compressor testing has been performed up to 500,000 rpm and has shown that the nominal compression rate at the 840,000 rpm nominal speed should be nearly reached.


Author(s):  
Pezhman Akbari ◽  
Norbert Mu¨ller

Results are presented predicting the significant performance enhancement of two small gas turbines (30 kW and 60 kW) by implementing various wave rotor topping cycles. Five different advantageous implementation cases for a four-port wave rotor into given baseline engines are considered. The compressor and turbine pressure ratios, and the turbine inlet temperatures vary in the thermodynamic calculations, according to the anticipated design objectives of the five cases. Advantages and disadvantages are outlined. Comparison between the theoretic performance (expressed by specific cycle work and overall thermal efficiency) of wave-rotor-topped and baseline engines shows a performance enhancement by up to 33%. The results obtained show that almost all the cases studied benefit from the wave-rotor-topping, but the highest gain is obtained for the case in which the topped engine operates with the same turbine inlet temperature and compressor pressure ratio as the baseline engine. General design maps are generated for the small gas turbines, showing the design space and optima for baseline and topped engines.


Author(s):  
Sanjay ◽  
Onkar Singh ◽  
B. N. Prasad

The paper deals with the thermodynamic performance of combined and cogeneration cycles using the state of the art gas turbines. A configuration has been conceptualized using the latest gas turbine MS9001H that uses steam to cool the hot gas path components. In order to study the effect of cooling means, the same gas turbine is subjected to transpiration air cooling. Using the above mentioned conceptualized topping cycle, the bottoming cycle selected consists of a two-pressure reheat heat recovery steam generator (HRSG) with reheat having two options. First option is the integrated system (IS), which is a combined/cogeneration cycle, and the other is called the normal cogeneration cycle (NC). Both of these cycles are subjected to steam and transpiration air-cooling. The cycle performance is predicted based on parameteric study which has been carried out by modeling the various elements of cycle such as gas, compressor combustor, cooed gas turbine, HRSG steam turbine, condenser, etc. The performance is predicted for parameters such as fuel utilization efficiency (ηf), power-to-heat-ratio (PHR), coolant flow requirements, plant specific work, etc. as a function of independent parameters such as compressor pressure ratio (rpc) and turbine inlet temperature (TIT), etc. The results predicted will be helpful for designers to select the optimum compressor pressure ratio and TIT to achieve the target fuel utilization efficiency, and PHR at the target plant specific work.


Author(s):  
Sanjay ◽  
Onkar Singh ◽  
B. N. Prasad

The present work deals with the thermodynamic evaluation of combined cycle with re-heat in gas turbine using the latest gas turbines namely ABB GT26 gas turbine (advanced) in which reheat is used and the blade cooling is done by air bled from compressor. The same turbine is subjected to closed loop steam cooling. Parametric study has been performed on plant efficiency and specific work for various independent parameters such as turbine inlet temperature, compressor pressure ratio, reheating pressure ratio, reheater inlet temperature, blade temperature, etc.. It has been observed that due to higher compressor pressure ratio involved in reheat gas turbine combined cycle and higher temperature of exhaust, the plant efficiency and specific work are higher with the advanced reheat gas/steam combined cycle over the simple combined cycle. Steam cooling offers better performance over aircooling.


Sign in / Sign up

Export Citation Format

Share Document