Experimental Methodology to Characterize Mechanical Losses in Small Turbochargers

Author(s):  
Francisco Payri ◽  
Jose R. Serrano ◽  
Pablo Olmeda ◽  
Arlington Paez ◽  
Fabrice Vidal

Turbocharging and turbocharger phenomena have been studied by many authors covering a wide range of subjects. One of these subjects, and objective of this work, is mechanical losses due to friction. Current work presents a methodology to characterize mechanical losses in small size turbochargers. Such methodology is based on low and constant operating temperature values for the turbine, lubricating oil, and compressor. In this way, a quasi-adiabatic operation of the turbocharger is achieved which allows separating friction power from heat transfer. The experiments performed have covered variations in turbocharger speed, lubricating oil pressure and temperature. Heat flows between turbine and compressor has been maintained as reduced as possible by means of the experiment conditions. The results obtained show satisfactory correlation between mechanical efficiency of the studied turbocharger and non-dimensional magnitudes.

1999 ◽  
Vol 121 (3) ◽  
pp. 592-597 ◽  
Author(s):  
J. E. Leland ◽  
M. R. Pais

An experimental investigation was performed to determine the heat transfer rates for an impinging free-surface axisymmetric jet of lubricating oil for a wide range of Prandtl numbers (48 to 445) and for conditions of highly varying properties (viscosity ratios up to 14) in the flowing film. Heat transfer coefficients were obtained for jet Reynolds numbers from 109 to 8592, nozzle orifice diameters of 0.51, 0.84 and 1.70 mm and a heated surface diameter of 12.95 mm. The effect of nozzle to surface spacing (1 to 8.5 mm), was also investigated. Viscous dissipation was found to have an effect at low heat fluxes. Distinct heat transfer regimes were identified for initially laminar and turbulent jets. The data show that existing constant property correlations underestimate the heat transfer coefficient by more than 100 percent as the wall to fluid temperature difference increases. Over 700 data points were used to generate Nusselt number correlations which satisfactorily account for the highly varying properties with a mean absolute error of less than ten percent.


Author(s):  
Matthew J. Rhodes ◽  
Scott M. Thompson

Abstract The thermal and capillary performance of a groove-enhanced, or “microchannel-embedded,” flat-plate oscillating heat pipe (MC FP-OHP) was experimentally investigated while varying heating width, orientation, working fluid and operating temperature. The copper MC FP-OHP possessed two layers of 1.02 × 1.02 mm2 square channels, with the center 14 channels possessing two embedded microchannels (0.25 × 0.13 mm2) aligned coaxially with the primary minichannels. A FP-OHP without embedded microchannels, but with deeper minichannels (DC FP-OHP), was also tested for comparison. The FP-OHPs were filled with Novec 7200 or water (both at 80% ± 2% by volume), and the heating widths were varied between full-width and localized configurations: 38.71 cm2 and 14.52 cm2, respectively. Experimental results demonstrate that the MC FP-OHP is significantly less sensitive to operating orientation and can perform with less detriment as heat flux increases. The MC FP-OHP has a lower startup heating requirement and provides more fluid wetting along the FP-OHP structure—which is advantageous for pumping liquid from the evaporator to the condenser. The MC FP-OHP has enhanced convective heat transfer during operation, as it was observed to have similar or lower thermal resistances to that of the DC FP-OHP for a wide range of operating conditions. The groove-enhanced minichannel within the MC FP-OHP also provides for enhanced heat transfer because there being more thin-film evaporation sites and vapor–liquid mixing between the minichannel and microchannels.


2017 ◽  
Vol 6 (2) ◽  
pp. 13
Author(s):  
P LOKESH ◽  
U. SOMALATHA ◽  
S. CHANDANA ◽  
◽  
◽  
...  

Oxford Studies in Ancient Philosophy provides, twice each year, a collection of the best current work in the field of ancient philosophy. Each volume features original essays that contribute to an understanding of a wide range of themes and problems in all periods of ancient Greek and Roman philosophy, from the beginnings to the threshold of the Middle Ages. From its first volume in 1983, OSAP has been a highly influential venue for work in the field, and has often featured essays of substantial length as well as critical essays on books of distinctive importance. Volume LIII contains: an article on several of Zeno of Elea’s paradoxes and the nihilist interpretation of Eudemus of Rhodes; an article on the coherence of Thrasymachus’ challenge in Plato’s Republic book 1; another on Plato’s treatment of perceptual content in the Theaetetus and the Phaedo; an article on why Aristotle thinks that hypotheses are material causes of conclusions, and another on why he denies shame is a virtue; and a book review of a new edition of a work possibly by Apuleius and Middle Platonist political philosophy.


Oxford Studies in Medieval Philosophy annually collects the best current work in the field of medieval philosophy. The various volumes print original essays, reviews, critical discussions, and editions of texts. The aim is to contribute to an understanding of the full range of themes and problems in all aspects of the field, from late antiquity into the Renaissance, and extending over the Jewish, Islamic, and Christian traditions. Volume 6 includes work on a wide range of topics, including Davlat Dadikhuda on Avicenna, Christopher Martin on Abelard’s ontology, Jeremy Skrzypek and Gloria Frost on Aquinas’s ontology, Jean‐Luc Solère on instrumental causality, Peter John Hartman on Durand of St.‐Pourçain, and Kamil Majcherek on Chatton’s rejection of final causality. The volume also includes an extended review of Thomas Williams of a new book on Aquinas’s ethics by Colleen McCluskey.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 968-980
Author(s):  
Xueping Du ◽  
Zhijie Chen ◽  
Qi Meng ◽  
Yang Song

Abstract A high accuracy of experimental correlations on the heat transfer and flow friction is always expected to calculate the unknown cases according to the limited experimental data from a heat exchanger experiment. However, certain errors will occur during the data processing by the traditional methods to obtain the experimental correlations for the heat transfer and friction. A dimensionless experimental correlation equation including angles is proposed to make the correlation have a wide range of applicability. Then, the artificial neural networks (ANNs) are used to predict the heat transfer and flow friction performances of a finned oval-tube heat exchanger under four different air inlet angles with limited experimental data. The comparison results of ANN prediction with experimental correlations show that the errors from the ANN prediction are smaller than those from the classical correlations. The data of the four air inlet angles fitted separately have higher precisions than those fitted together. It is demonstrated that the ANN approach is more useful than experimental correlations to predict the heat transfer and flow resistance characteristics for unknown cases of heat exchangers. The results can provide theoretical support for the application of the ANN used in the finned oval-tube heat exchanger performance prediction.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4459
Author(s):  
José R. González ◽  
Charbel Damião ◽  
Maira Moran ◽  
Cristina A. Pantaleão ◽  
Rubens A. Cruz ◽  
...  

According to experts and medical literature, healthy thyroids and thyroids containing benign nodules tend to be less inflamed and less active than those with malignant nodules. It seems to be a consensus that malignant nodules have more blood veins and more blood circulation. This may be related to the maintenance of the nodule’s heat at a higher level compared with neighboring tissues. If the internal heat modifies the skin radiation, then it could be detected by infrared sensors. The goal of this work is the investigation of the factors that allow this detection, and the possible relation with any pattern referent to nodule malignancy. We aim to consider a wide range of factors, so a great number of numerical simulations of the heat transfer in the region under analysis, based on the Finite Element method, are performed to study the influence of each nodule and patient characteristics on the infrared sensor acquisition. To do so, the protocol for infrared thyroid examination used in our university’s hospital is simulated in the numerical study. This protocol presents two phases. In the first one, the body under observation is in steady state. In the second one, it is submitted to thermal stress (transient state). Both are simulated in order to verify if it is possible (by infrared sensors) to identify different behavior referent to malignant nodules. Moreover, when the simulation indicates possible important aspects, patients with and without similar characteristics are examined to confirm such influences. The results show that the tissues between skin and thyroid, as well as the nodule size, have an influence on superficial temperatures. Other thermal parameters of thyroid nodules show little influence on surface infrared emissions, for instance, those related to the vascularization of the nodule. All details of the physical parameters used in the simulations, characteristics of the real nodules and thermal examinations are publicly available, allowing these simulations to be compared with other types of heat transfer solutions and infrared examination protocols. Among the main contributions of this work, we highlight the simulation of the possible range of parameters, and definition of the simulation approach for mapping the used infrared protocol, promoting the investigation of a possible relation between the heat transfer process and the data obtained by infrared acquisitions.


Sign in / Sign up

Export Citation Format

Share Document