Theoretical Prediction of the Lift-Off Speed in Aerodynamic Compliant Foil Journal Bearings

Author(s):  
Shemiao Qi ◽  
Y. S. Ho ◽  
Haipeng Geng ◽  
Lie Yu

In aerodynamic bearings, since the supporting air film is generated by rotor motion, there is no support at the start of motion. As in all such bearings, there is dry rubbing until the rotor achieves sufficient speed to lift-off. Thus, the lower the lift-off speed, the less will be the rubbing and so the greater will be the life of the bearing. This paper focuses on the theoretical prediction of lift-off speed in aerodynamic compliant foil journal bearings based on a generalized solution of elasto-aerodynamically coupled lubrication for compliant foil bearings. A computational method is presented which is used to predict the lift-off speed in aerodynamic foil journal bearings with eccentricity ratio greater than or equal to 1.0. Special emphasis is placed on investigating the effects of the load imposed on the bearing, the nominal radial clearance and the bearing radius on the lift-off speed. The numerical results obtained indicate that lift-off speed decreases with the decrease of load and nominal radial clearance, but with an increase in bearing radius. The eccentricity ratios are all greater than 1.0 at the lift-off speed for the aerodynamic compliant foil journal bearings used in this study.

Author(s):  
Sadanand Kulkarni ◽  
Soumendu Jana

High-speed rotating system development has drawn considerable attention of the researchers, in the recent past. Foil bearings are one of the major contenders for such applications, particularly for high speed and low load rotating systems. In foil bearings, process fluid or air is used as the working medium and no additional lubricant is required. It is known from the published literature that the load capacity of foil bearings depend on the operating speed, viscosity of the medium, clearance, and stiffness of the foil apart from the geometric dimensions of the bearing. In case of foil bearing with given dimensions, clearance governs the magnitude of pressure developed, whereas stiffness dictates the change in radial clearance under the generated pressure. This article deals with the effect of stiffness, clearance, and its interaction on the bump foil bearings load-carrying capacity. For this study, four sets of foil bearings of the same geometry with two levels of stiffness and clearance values are fabricated. Experiments are carried out following two factor-two level factorial design approach under constant load and in each case, the lift-off speed is measured. The experimental output is analyzed using statistical techniques to evaluate the influence of parameters under consideration. The results indicate that clearance has the maximum influence on the lift-off speed/ load-carrying capacity, followed by interaction effect and stiffness. A regression model is developed based on the experimental values and model is validated using error analysis technique.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Hossein Sadri ◽  
Henning Schlums ◽  
Michael Sinapius

Abstract Various solutions for the design of oil-free bearings are discussed in the literature. Adding hydrodynamic preload to the foil bearings by profiling the inner bore of the bearing is one of the most frequently investigated methods for improving the bearing stability and damping character of the entire system. However, this approach leads to a reduced load capacity and thus to an increased lift-off speed of the foil bearings. Observations of this kind lead to the presentation of various solutions for active bearing contour adjustment, which benefits from different profiles of the lubricant film. Most of these concepts use piezoelectric stack actuators to generate the required alternating force, although the influence of the stiffness of adaptive elements on bearing performance is not fully discussed in the literature. The focus of this study is on the investigation of structural conformity, i.e., the harmonization of stiffness with respect to the requirements for shape control and load capacity of an adaptive air foil bearing (AAFB). The result may be a basis for the consideration of additional degrees of freedom in any concept with shape control as the main design framework in interaction between the lubricant and compliant structure in an air foil bearing from both static and dynamic points of view.


Author(s):  
Jiajia Yan ◽  
Zhansheng Liu ◽  
Guanghui Zhang ◽  
Xiangyu Yu ◽  
Liang Xu

This paper presents the feasibility study of an oil-free turbocharger with journal bearing diameter of 17 mm. Rotordynamic performance of a turbocharger rotor, supported by two identical bump-type foil journal bearings and a pair of foil thrust bearings, is predicted and tested. High-pressure cold nitrogen is adopted to drive the turbocharger rotor. In rotordynamic analysis, the critical speeds and logarithmic decrement of the turbocharger rotor are predicted by employing the finite element method, in which the stiffness and damping coefficients of foil journal bearings and aerodynamic cross-coupled stiffness of the turbine are taken into account. Compared with experimental results, the accuracy of the prediction for rotordynamic analysis is verified for 7.82% marginal error of the critical speed. During the experiment, three foil journal bearings with different nominal clearances are manufactured and tested. The maximum stable operating speed reaches 105,000 r/min for this 17-mm-diameter oil-free turbocharger rotor system. Test results indicate the nominal clearance has a negative influence on threshold speed of sub-synchronous motions. When the nominal clearance is relatively small, the foil journal bearing could not lift off due to a large starting torque, while sub-synchronous motions would emerge under a large nominal clearance because of the reduced stiffness and damping coefficients of foil journal bearings.


Author(s):  
Kai Feng ◽  
Shigehiko Kaneko

A numerical model for 3D thermohydrodynamic analysis of bump-type foil bearings with a sparse mesh across the air film is described. The model accounts for heat convection into cooling air, thermal expansion of the bearing components, and material property variations due to temperature rise. Deflection of the compliant foil strip, described as a link-spring structure, is coupled to the solution of the generalized Reynolds equation and the energy equation to account for the effect of foil deformation on the film thickness. The variation in bump stiffness with the thermal growth of bumps is also considered in the model. The unique airflow in foil bearings created by the top foil detachment in the subambient region is analyzed for use in modifying the thermal boundary condition. The Lobatto point quadrature algorithm is used to represent the model on a sparse mesh and thereby reduce the computational effort. The calculated bearing temperatures are in remarkable agreement with both the published test data with the use of cooling air and that without the use of cooling air. The change of bearing radial clearance due to thermal growth of the bearing components was found to significantly affect the bearing load and to be a likely cause of the obvious drop in load capacity with a rise in ambient temperature.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Carlo Alberto Niccolini Marmont Du Haut Champ ◽  
Fabrizio Stefani ◽  
Paolo Silvestri

The aim of the present research is to characterize both experimentally and numerically journal bearings with low radial clearances for rotors in small-scale applications (e.g., microgas turbines); their diameter is in the order of ten millimetres, leading to very small dimensional clearances when the typical relative ones (order of 1/1000) are employed; investigating this particular class of journal bearings under static and dynamic loading conditions represents something unexplored. To this goal, a suitable test rig was designed and the performance of its bearings was investigated under steady load. For the sake of comparison, numerical simulations of the lubrication were also performed by means of a simplified model. The original test rig adopted is a commercial rotor kit (RK), but substantial modifications were carried out in order to allow significant measurements. Indeed, the relative radial clearance of RK4 RK bearings is about 2/100, while it is around 1/1000 in industrial bearings. Therefore, the same original RK bearings are employed in this new test rig, but a new shaft was designed to reduce their original clearance. The new custom shaft allows to study bearing behaviour for different clearances, since it is equipped with interchangeable journals. Experimental data obtained by this test rig are then compared with further results of more sophisticated simulations. They were carried out by means of an in-house developed finite element (FEM) code, suitable for thermoelasto-hydrodynamic (TEHD) analysis of journal bearings both in static and dynamic conditions. In this paper, bearing static performances are studied to assess the reliability of the experimental journal location predictions by comparing them with the ones coming from already validated numerical codes. Such comparisons are presented both for large and small clearance bearings of original and modified RKs, respectively. Good agreement is found only for the modified RK equipped with small clearance bearings (relative radial clearance 8/1000), as expected. In comparison with two-dimensional lubrication analysis, three-dimensional simulation improves prediction of journal location and correlation with experimental results.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Tao He ◽  
Xiqun Lu ◽  
Jingzhi Zhu

The analytical mobility method for dynamically loaded journal bearings was presented, with the intent to include it in a general computational program, such as the dynamic analysis program, that has been developed for the dynamic analysis of general mechanical systems. An illustrative example and numerical results were presented, with the efficiency of the method being discussed in the process of their presentation.


2015 ◽  
Vol 776 ◽  
pp. 531-567 ◽  
Author(s):  
Jolet de Ruiter ◽  
Rudy Lagraauw ◽  
Frieder Mugele ◽  
Dirk van den Ende

Millimetre-sized droplets are able to bounce multiple times on flat solid substrates irrespective of their wettability, provided that a micrometre-thick air layer is sustained below the droplet, limiting $\mathit{We}$ to ${\lesssim}4$. We study the energy conversion during a bounce series by analysing the droplet motion and its shape (decomposed into eigenmodes). Internal modes are excited during the bounce, yet the viscous dissipation associated with the in-flight oscillations accounts for less than 20 % of the total energy loss. This suggests a significant contribution from the bouncing process itself, despite the continuous presence of a lubricating air film below the droplet. To study the role of this air film we visualize it using reflection interference microscopy. We quantify its thickness (typically a few micrometres) with sub-millisecond time resolution and ${\sim}30~\text{nm}$ height resolution. Our measurements reveal strong asymmetry in the air film shape between the spreading and receding phases of the bouncing process. This asymmetry is crucial for effective momentum reversal of the droplet: lubrication theory shows that the dissipative force is repulsive throughout each bounce, even near lift-off, which leads to a high restitution coefficient. After multiple bounces the droplet eventually hovers on the air film, while continuously experiencing a lift force to sustain its weight. Only after a long time does the droplet finally wet the substrate. The observed bounce mechanism can be described with a single oscillation mode model that successfully captures the asymmetry of the air film evolution.


Author(s):  
Osvaldo Pinheiro de Souza e Silva ◽  
Severino Fonseca da Silva Neto ◽  
Ilson Paranhos Pasqualino ◽  
Antonio Carlos Ramos Troyman

This work discusses procedures used to determine effective shear area of ship sections. Five types of ships have been studied. Initially, the vertical natural frequencies of an acrylic scale model 3m in length in a laboratory at university are obtained from experimental tests and from a three dimensional numerical model, and are compared to those calculated from a one dimensional model which the effective shear area was calculated by a practical computational method based on thin-walled section Shear Flow Theory. The second studied ship was a ship employed in midshipmen training. Two models were made to complement some studies and vibration measurements made for those ships in the end of 1980 decade when some vibration problems in them were solved as a result of that effort. Comparisons were made between natural frequencies obtained experimentally, numerically from a three dimensional finite element model and from a one dimensional model in which effective shear area is considered. The third and fourth were, respectively, a tanker ship and an AHTS (Anchor Handling Tug Supply) boat, both with comparison between three and one dimensional models results out of water. Experimental tests had been performed in these two ships and their results were used in other comparison made after the inclusion of another important effect that acts simultaneously: the added mass. Finally, natural frequencies experimental and numerical results of a barge are presented. The natural frequencies numerical results of vertical hull vibration obtained from these approximations of effective shear areas for the five ships are finally discussed.


Author(s):  
Bo Zhang ◽  
Shemiao Qi ◽  
Sheng Feng ◽  
Haipeng Geng ◽  
Yanhua Sun ◽  
...  

Two multileaf gas foil journal bearings with backing bump foils and one set of gas foil thrust bearings were designed, fabricated, and used in a 100 kW class microturbine simulated rotor system to ensure stability of the system. Meanwhile, a preliminary test rig had been built to verify the simulated system stability. The rotor synchronous and subsynchronous responses were well controlled by using of the gas foil bearings. It is on the multileaf gas foil bearings with backing bump foils that the test was conducted and verified for the first time in open literatures. The success in the experiments shows that the design and fabrication of the rotor and the gas foil bearings can provide a useful guide to the development of the advanced high speed rotating machinery.


Sign in / Sign up

Export Citation Format

Share Document