scholarly journals Shock Propagation and MPT Noise From a Transonic Rotor in Non-Uniform Flow

Author(s):  
J. J. Defoe ◽  
Z. S. Spakovszky

One of the major challenges in hig4h-speed fan stages used in compact, embedded propulsion systems is inlet distortion noise. A body-force-based approach for the prediction of multiple-pure-tone (MPT) noise was previously introduced and validated. In this paper, it is employed with the objective of quantifying the effects of non-uniform flow on the generation and propagation of MPT noise. First-of-their-kind back-to-back coupled aero-acoustic computations were carried out using the new approach for conventional and serpentine inlets. Both inlets delivered flow to the same NASA/GE R4 fan rotor at equal corrected mass flow rates. Although the source strength at the fan is increased by 45 dB in sound power level due to the non-uniform inflow, far-field noise for the serpentine inlet duct is increased on average by only 3.1 dBA overall sound pressure level in the forward arc. This is due to the redistribution of acoustic energy to frequencies below 11 times the shaft frequency and the apparent cut-off of tones at higher frequencies including blade-passing tones. The circumferential extent of the inlet swirl distortion at the fan was found to be 2 blade pitches, or 1/11th of the circumference, suggesting a relationship between the circumferential extent of the inlet distortion and the apparent cut-off frequency perceived in the far field. A first-principles-based model of the generation of shock waves from a transonic rotor in non-uniform flow showed that the effects of non-uniform flow on acoustic wave propagation, which cannot be captured by the simplified model, are more dominant than those of inlet flow distortion on source noise. It demonstrated that non-linear, coupled aerodynamic and aero-acoustic computations, such as those presented in this paper, are necessary to assess the propagation through non-uniform mean flow. A parametric study of serpentine inlet designs is underway to quantify these propagation effects.

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Jeffrey J. Defoe ◽  
Zoltán S. Spakovszky

One of the major challenges in high-speed fan stages used in compact, embedded propulsion systems is inlet distortion noise. A body-force-based approach for the prediction of multiple-pure-tone (MPT) noise was previously introduced and validated. In this paper, it is employed with the objective of quantifying the effects of nonuniform flow on the generation and propagation of MPT noise. First-of-their-kind back-to-back coupled aero-acoustic computations were carried out using the new approach for conventional and serpentine inlets. Both inlets delivered flow to the same NASA/GE R4 fan rotor at equal corrected mass flow rates. Although the source strength at the fan is increased by 38 dB in sound power level due to the nonuniform inflow, far-field noise for the serpentine inlet duct is increased on average by only 3.1 dBA overall sound pressure level in the forward arc. This is due to the redistribution of acoustic energy to frequencies below 11 times the shaft frequency and the apparent cut-off of tones at higher frequencies including blade-passing tones. The circumferential extent of the inlet swirl distortion at the fan was found to be two blade pitches, or 1/11th of the circumference, suggesting a relationship between the circumferential extent of the inlet distortion and the apparent cut-off frequency perceived in the far field. A first-principles-based model of the generation of shock waves from a transonic rotor in nonuniform flow showed that the effects of nonuniform flow on acoustic wave propagation, which cannot be captured by the simplified model, are more dominant than those of inlet flow distortion on source noise. It demonstrated that nonlinear, coupled aerodynamic and aero-acoustic computations, such as those presented in this paper, are necessary to assess the propagation through nonuniform mean flow. A parametric study of serpentine inlet designs is underway to quantify these propagation effects.


2012 ◽  
Vol 707 ◽  
pp. 53-73 ◽  
Author(s):  
Michael J. Brear ◽  
Frank Nicoud ◽  
Mohsen Talei ◽  
Alexis Giauque ◽  
Evatt R. Hawkes

AbstractThis paper presents an analysis of the energy transported by disturbances in gaseous combustion. It extends the previous work of Myers (J. Fluid Mech., vol. 226, 1991, 383–400) and so includes non-zero mean-flow quantities, large-amplitude disturbances, varying specific heats and chemical non-equilibrium. This extended form of Myers’ ‘disturbance energy’ then enables complete identification of the conditions under which the famous Rayleigh source term can be derived from the equations governing combusting gas motion. These are: small disturbances in an irrotational, homentropic, non-diffusive (in terms of species, momentum and energy) and stationary mean flow at chemical equilibrium. Under these assumptions, the Rayleigh source term becomes the sole source term in a conservation equation for the classical acoustic energy. It is also argued that the exact disturbance energy flux should become an acoustic energy flux in the far-field surrounding a (reacting or non-reacting) jet. In this case, the volume integral of the disturbance energy source terms are then directly related to the area-averaged far-field sound produced by the jet. This is demonstrated by closing the disturbance energy budget over a set of aeroacoustic, direct numerical simulations of a forced, low-Mach-number, laminar, premixed flame. These budgets show that several source terms are significant, including those involving the mean-flow and entropy fields. This demonstrates that the energetics of sound generation cannot be examined by considering the Rayleigh source term alone.


Author(s):  
Pankaj Rajput ◽  
Sunil Kumar

The main aim of this investigation is to analyze directional noise reduction resulting from asymmetric high momentum fluidic injection downstream of a Mach 0.9 nozzle. Jet noise has been identified as one of the primary obstacles to increasing commercial aviation capacity. Microjets in cross flow are known to enhance turbulent mixing in the shear layer due to the induced stream-wise vortices. This enhanced mixing can be used for reorganizing the spatial distribution of acoustic energy. Targeted reduction in the downward-emitted turbulent mixing noise can be achieved by strategically injecting high momentum fluid downstream of the jet exhaust. Detailed Large Eddy Simulations were performed on a hybrid block structured-unstructured mesh to generate the flow field which was then used for near field and far field noise computation. Aeroacoustic analogy based formulation was used for computing far-field noise estimation. Benchmark cases were validated with preexisting experimental data sets. Mean flow measurements suggest shorter jet core lengths due to the enhanced mixing resulting from fluidic injection. The induced asymmetry due to the fluidic injection gives rise to an asymmetric acoustic field leading to targeted directional noise reduction in the far field as measured by pressure probes.


Author(s):  
Xuesong Wu ◽  
Zhongyu Zhang

As a methodology complementary to acoustic analogy, the asymptotic approach to aeroacoustics seeks to predict aerodynamical noise on the basis of first principles by probing into the physical processes of acoustic radiation. The present paper highlights the principal ideas and recent developments of this approach, which have shed light on some of the fundamental issues in sound generation in shear flows. The theoretical work on sound wave emission by nonlinearly modulated wavepackets of supersonic and subsonic instability modes in free shear flows identifies the respective physical sources or emitters. A wavepacket of supersonic modes is itself an efficient emitter, radiating directly intensive sound in the form of a Mach wave beam, the frequencies of which are in the same band as those of the modes in the packet. By contrast, a wavepacket of subsonic modes radiates very weak sound directly. However, the nonlinear self-interaction of such a wavepacket generates a slowly modulated mean-flow distortion, which then emits sound waves with low frequencies and long wavelengths on the scale of the wavepacket envelope. In both cases, the acoustic waves emitted to the far field are explicitly expressed in terms of the amplitude function of the wavepacket. The asymptotic approach has also been applied to analyse generation of sound waves in wall-bounded shear flows on the triple-deck scale. Several subtleties have been found. The near-field approximation has to be worked out to a sufficiently higher order in order just to calculate the far-field sound at leading order. The back action of the radiated sound on the flow in the viscous sublayer and the main shear layer is accounted for by an impedance coefficient. This effect is of higher order in the subsonic regime, but becomes a leading order in the transonic and supersonic regimes. This article is part of the theme issue ‘Frontiers of aeroacoustics research: theory, computation and experiment’.


Author(s):  
J. J. Defoe ◽  
Z. S. Spakovszky

The use of boundary-layer-ingesting, embedded propulsion systems can result in inlet flow distortions where the interaction of the boundary layer vorticity and the inlet lip causes horseshoe vortex formation and the ingestion of streamwise vortices into the inlet. A previously-developed body-force-based fan modeling approach was used to assess the change in fan rotor shock noise generation and propagation in a boundary-layer-ingesting, serpentine inlet. This approach is employed here in a parametric study to assess the effects of inlet geometry parameters (offset-to-diameter ratio and downstream-to-upstream area ratio) on flow distortion and rotor shock noise. Mechanisms related to the vortical inlet structures were found to govern changes in the rotor shock noise generation and propagation. The vortex whose circulation is in the opposite direction to the fan rotation (counter-swirling vortex) increases incidence angles on the fan blades near the tip, enhancing noise generation. The vortex with circulation in the direction of fan rotation (co-swirling vortex) creates a region of subsonic relative flow near the blade tip radius which decreases the sound power propagated to the far-field. The parametric study revealed that the overall sound power level at the fan leading edge is set by the ingested streamwise circulation, and that for inlet designs in which the streamwise vortices are displaced away from the duct wall, the sound power at the upstream inlet plane increased by as much as 9 dB. By comparing the far-field noise results obtained to those for a conventional inlet, it is deduced that the changes in rotor shock noise are predominantly due to the ingestion of streamwise vorticity.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Jeffrey J. Defoe ◽  
Zoltán S. Spakovszky

The use of boundary-layer-ingesting, embedded propulsion systems can result in inlet flow distortions where the interaction of the boundary-layer vorticity and the inlet lip causes horseshoe vortex formation and the ingestion of streamwise vortices into the inlet. A previously-developed body-force-based fan modeling approach was used to assess the change in fan rotor shock noise generation and propagation in a boundary-layer-ingesting, serpentine inlet. This approach is employed here in a parametric study to assess the effects of inlet geometry parameters (offset-to-diameter ratio and downstream-to-upstream area ratio) on flow distortion and rotor shock noise. Mechanisms related to the vortical inlet structures were found to govern changes in the rotor shock noise generation and propagation. The vortex whose circulation is in the opposite direction to the fan rotation (counter-swirling vortex) increases incidence angles on the fan blades near the tip, enhancing noise generation. The vortex with circulation in the direction of fan rotation (co-swirling vortex) creates a region of subsonic relative flow near the blade tip radius that decreases the sound power propagated to the far-field. The parametric study revealed that the overall sound power level at the fan leading edge is set by the ingested streamwise circulation, and that for inlet designs in which the streamwise vortices are displaced away from the duct wall, the sound power at the upstream inlet plane increased by as much as 9 dB. By comparing the far-field noise results obtained to those for a conventional inlet, it is deduced that the changes in rotor shock noise are predominantly due to the ingestion of streamwise vorticity.


2013 ◽  
Vol 30 (8) ◽  
pp. 1803-1819 ◽  
Author(s):  
Luksa Luznik ◽  
Cody J. Brownell ◽  
Murray R. Snyder ◽  
Hyung Suk Kang

Abstract This paper describes a set of turbulence measurements at sea in the area of high flow distortion in the near-wake and recirculation zone behind a ship's superstructure that is similar in geometry to a helicopter hangar/flight deck arrangement found on many modern U.S. Navy ships. The instrumented ship is a 32-m-long training vessel operated by the United States Naval Academy that has been modified by adding a representative flight deck and hangar structure. The flight deck is instrumented with up to seven sonic anemometers/thermometers that are used to obtain simultaneous velocity measurements at various spatial locations on the flight deck, and one sonic anemometer at bow mast is used to characterize inflow atmospheric boundary conditions. Data characterizing wind over the deck at an incoming angle of 0° (head winds) and wind speeds from 2 to 10 m s−1 obtained in the Chesapeake Bay are presented and discussed. Turbulent statistics of inflow conditions are analyzed using the Kaimal universal turbulence spectral model for the atmospheric surface layer and show that for the present dataset this approach eliminates the need to account for platform motion in computing variances and covariances. Conditional sampling of mean flow and turbulence statistics at the flight deck indicate no statistically significant variations between unstable, stable, and neutral atmospheric inflow conditions, and the results agree with the published data for flows over the backward-facing step geometries.


Author(s):  
Christoph Jörg ◽  
Michael Wagner ◽  
Thomas Sattelmayer

The thermoacoustic stability of gas turbines depends on a balance of acoustic energy inside the engine. While the flames produce acoustic energy, other areas like the impingement cooling system contribute to damping. In this paper, we investigate the damping potential of an annular impingement sleeve geometry embedded into a realistic environment. A cold flow test rig was designed to represent real engine conditions in terms of geometry, and flow situation. High quality data was delivered by six piezoelectric dynamic pressure sensors. Experiments were carried out for different mean flow velocities through the cooling holes. The acoustic reflection coefficient of the impingement sleeve was evaluated at a downstream reference location. Further parameters investigated were the number of cooling holes, and the geometry of the chamber surrounding the impingement sleeve. Experimental results show that the determining parameter for the reflection coefficient is the mean flow velocity through the impingement holes. An increase of the mean flow velocity leads to significantly increased damping, and to low values of the reflection coefficient.


Author(s):  
Albert Kammerer ◽  
Reza S. Abhari

Centrifugal compressors operating at varying rotational speeds, such as in helicopters or turbochargers, can experience forced response failure modes. The response of the compressors can be triggered by aerodynamic flow non-uniformities, such as with diffuser-impeller interaction or with inlet distortions. The work presented here addresses experimental investigations of forced response in centrifugal compressors with inlet distortions. This research is part of an ongoing effort to develop related experimental techniques and to provide data for validation of computational tools. In this work measurements of blade surface pressure and aerodynamic work distribution were addressed. A series of pressure sensors were designed and installed on rotating impeller blades and simultaneous measurements with blade-mounted strain gauges were performed under engine representative conditions. To the best knowledge of the authors, this is the first publication which presents comprehensive experimental unsteady pressure measurements during forced response for highspeed radial compressors. Experimental data were obtained for both resonance and off-resonance conditions with uniquely tailored inlet distortion. This paper covers aspects relating to the design of fast response pressure sensors and their installation on thin impeller blades. Additionally, sensor properties are outlined with a focus on calibration and measurement uncertainty estimations. The second part of this paper presents unsteady pressure results taken for a number of inlet distortion cases. It will be shown that the intended excitation order due to inlet flow distortion is of comparable magnitude to the second and third harmonics which are consistently observed in all measurements. Finally, an experimental method will be outlined that enables the measurement aerodynamic work on the blade surface during resonant crossing. This approach quantifies the energy exchange between the blade and the flow in terms of cyclic work along the blade surface. The phase angle between the unsteady pressure and the blade movement will be shown to determine the direction of energy transfer between the blade and the fluid.


Author(s):  
M. M. Al-Mudhafar ◽  
M. Ilyas ◽  
F. S. Bhinder

The results of an experimental study on the influence of severely distorted velocity profiles on the performance of a straight two-dimensional diffuser are reported. The data cover entry Mach numbers ranging from 0.1 to 0.6 and several inlet distortion levels. The pressure recovery progressively deteriorates as the inlet velocity is distorted.


Sign in / Sign up

Export Citation Format

Share Document