Effusion Cooling With Backside Crossflow Cooling and the Backside Coolant Mass Flow Rate Greater Than the Effusion Cooling Mass Flow

Author(s):  
G. E. Andrews ◽  
I. M. Khalifa

Full coverage effusion cooling was studied for a square array of 90° effusion cooling holes with backside cooling using a 5 mm depth duct air supply to the coolant holes, with the duct air mass flow rate being greater than the effusion cooling flow. This geometry represents combustor primary zone wall cooling with the dilution air or main combustion air comprising the excess backside flow rate. Active cooling was used with metal walls and 300K effusion cooling into a 27 m/s mean velocity duct flow at 770K crossflow temperature. The aim was to provide conjugate heat transfer experimental data to validate conjugate heat transfer CFD prediction procedures. The 152 mm square test section had 15 rows of holes The X/D value studied was 11.0, which gives a 3% effusion wall pressure loss at a relatively low effusion coolant mass flow rate. The duct air feed to the holes enhanced the backside cooling of the wall. These results were compared with previous work using a plenum chamber air feed and with a crossflow duct, but with equal cross flow air to effusion air. The increased duct air feed velocity relative to the plenum low velocity air feed resulted in an increase in the overall cooling effectiveness due to the additional heat transfer by the duct crossflow velocity. This effect was across the whole duct length when there was surplus cross flow air relative to effusion air, without this the enhanced heat transfer was small and confined to the leading edge area.

Author(s):  
G. E. Andrews

Full coverage effusion cooling was studied for a square array of 90° effusion cooling holes with backside cooling using a 5 mm duct air supply to the coolant holes. Active cooling was used with metal walls and 300K effusion cooling into a 27 m/s mean velocity duct flow at 770K crossflow temperature. The 152 mm square test section had 15 rows of holes and the hole diameter, D, was varied for constant hole pitch, X. The X/D values studied were 11.0, 7.0 and 4.6. At a constant coolant mass flow rate the wall pressure loss was reduced as X/D was reduced and there was an associated reduction in the film blowing ratio, M. The duct air feed to the holes enhanced the backside cooling of the wall. These results were compared with previous work using a plenum chamber air feed. The increased duct air feed velocity relative to the plenum low velocity air feed resulted in an increase in the overall cooling effectiveness due to the additional heat transfer by the duct crossflow velocity. However, the trailing edge cooling effectiveness improvement was small as there was no residual cross flow here and the greatest effect was at the leading edge of the test wall. The decrease in X/D was the most effective way of increasing the overall cooling effectiveness as this reduced the blowing rate without decreasing the coolant mass flow rate. This was more effective than using 30° inclined holes with an X/D of 11, as the hole exit velocity was much lower for the same coolant mass flow rate with 90°holes at an X/D of 4.8 than with 30°holes at an X/D of 11.0.


Author(s):  
Xingyun Jia ◽  
Liguo Wang ◽  
Qun Zheng ◽  
Hai Zhang ◽  
Yuting Jiang

Performance of generic rim seal configurations, axial-clearance rim seal (ACS), radial-clearance rim seal (RCS), radial-axial clearance rim seal (RACS) are compared under realistic working conditions. Conjugate heat transfer analysis on rim seal is performed in this paper to understand the impact of ingestion on disc temperature. Results show that seal effectiveness and cooling effectiveness of RACS are the best when compared with ACS and RCS, the minimum mass flow rate for seal of RACS is 75% of that of RCS, and 34.6% of ACS. Authors compare the disc temperature distribution between different generic rim seal configurations where the RACS seems to be favorable in terms of low disc temperature. In addition, RACS has higher air-cooled aerodynamic efficiency, minimizing the mainstream performance penalty when compared with ACS and RCS. Corresponding to the respective minimum mass flow rate for seal, the air-cooled aerodynamic efficiency of RACS is 23.71% higher than that of ACS, and 12.79% higher than the RCS.


Author(s):  
Gaowen Liu ◽  
Zhao Lei ◽  
Aqiang Lin ◽  
Qing Feng ◽  
Yan Chen

The pre-swirl system is of great importance for temperature drop and cooling air supply. This study aims to investigate the influencing mechanism of heat transfer, nonuniform thermodynamic characteristics, and cooling air supply sensitivity in a pre-swirl system by the application of the flow control method of the pre-swirl nozzle. A novel test rig was proposed to actively control the supplied cooling air mass flow rate by three adjustable pre-swirl nozzles. Then, the transient problem of the pre-swirl system was numerically conducted by comparison with 60°, 120°, and 180° rotating disk cavity cases, which were verified with the experiment results. Results show that the partial nozzle closure will aggravate the fluctuation of air supply mass flow rate and temperature. When three parts of nozzles are closed evenly at 120° in the circumferential direction, the maximum value of the nonuniformity coefficient of air supply mass flow rate changes to 3.1% and that of temperature changes to 0.25%. When six parts of nozzles are closed evenly at 60° in the circumferential direction, the maximum nonuniformity coefficient of air supply mass flow rate changes to 1.4% and that of temperature changes to 0.20%. However, different partial nozzle closure modes have little effect on the average air supply parameters. Closing 14.3% of the nozzle area will reduce the air supply mass flow rate by 9.9% and the average air supply temperature by about 1 K.


2003 ◽  
Vol 125 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Chang-Yuan Liu ◽  
Ying-Huei Hung

Both experimental and theoretical investigations on the heat transfer and flow friction characteristics of compact cold plates have been performed. From the results, the local and average temperature rises on the cold plate surface increase with increasing chip heat flux or decreasing air mass flow rate. Besides, the effect of chip heat flux on the thermal resistance of cold plate is insignificant; while the thermal resistance of cold plate decreases with increasing air mass flow rate. Three empirical correlations of thermal resistance in terms of air mass flow rate with a power of −0.228 are presented. As for average Nusselt number, the effect of chip heat flux on the average Nusselt number is insignificant; while the average Nusselt number of the cold plate increases with increasing Reynolds number. An empirical relationship between Nu¯cp and Re can be correlated. In the flow frictional aspect, the overall pressure drop of the cold plate increases with increasing air mass flow rate; while it is insignificantly affected by chip heat flux. An empirical correlation of the overall pressure drop in terms of air mass flow rate with a power of 1.265 is presented. Finally, both heat transfer performance factor “j” and pumping power factor “f” decrease with increasing Reynolds number in a power of 0.805; while they are independent of chip heat flux. The Colburn analogy can be adequately employed in the study.


In this investigation of multi heat pipe induced in heat exchanger shows the developments in heat transfer is to improve the efficiency of heat exchangers. Water is used as a heat transfer fluid and acetone is used as a working fluid. Rotameter is set to measure the flow rate of cold water and hot water. To maintain the parameter as experimental setup. Then set the mass flow rate of hot water as 40 LPH, 60LPH, 80 LPH, 100LPH, 120 LPH and mass flow rate of cold water as 20 LPH, 30 LPH, 40 LPH, 50 LPH, and 60 LPH. Then 40 C, 45 ºC, 50 ºC, 55 C, 60 ºC are the temperatures of hot water at inlet are maintained. To find some various physical parameters of Qc , hc , Re ,, Pr , Rth. The maximum effectiveness of the investigation obtained from condition of Thi 60 C, Tci 32 C and 100 LPH mhi, 60 LPH mci the maximum effectiveness attained as 57.25. Then the mhi as 100 LPH, mci as 60 LPH and Thi at 40 C as 37.6%. It shows the effectiveness get increased about 34.3 to the maximum conditions.


2020 ◽  
Vol 82 (3) ◽  
Author(s):  
Muji Setiyo ◽  
Budi Waluyo ◽  
Nurkholis Hamidi

The ½ cycle refrigeration system on LPG fueled vehicles has a significant cooling effect. However, the cooling is very dependent on the heat exchange process in the evaporator. Therefore, this paper analyses the deviation of the actual cooling curve from the ideal scenario carried out on a laboratory scale. The analytical method used is the calculation of the effectiveness of the evaporator, which compares the actual to the potential heat transfer capacity. The LPG flow rate was varied from 1-6 g/s, while the evaporation pressure ranged between 0.05, 0.10, and 0.15 MPa, which applied to compact type evaporators with dimensions of 262 ´ 200 mm, with a thickness of 65 mm. The research results confirm that the higher the LPG mass flow rate, the lower the heat transfer effectiveness. At the higher LPG mass flow rate, heat transfer occurs less optimally,  due to incomplete evaporation of LPG in the evaporator.


2021 ◽  
Author(s):  
Jun Dong ◽  
Hao Wang ◽  
Samuel Darr ◽  
Jason Hartwig ◽  
Jacob Chung

Abstract This is the second part of a two-part series that presents the results of liquid nitrogen spray quenching of a Stainless Steel disc. The results of continuous-flow spray chilldown of a bare surface disc are summarized first that serves as the baseline information for evaluating the effects of disc surface coating and pulse flow. We found that for continuous-flow spray chilldown of a bare surface disc, the chilldown efficiency is mainly a function of the average mass flow rate with the trend of decreasing efficiency with increasing mass flow rate. Additional experiments were performed to evaluate the enhancement of cryogenic spray quenching by three techniques: 1. Using intermittent pulse sprays on SS bare surface, 2. Coating the SS surface with a layer of low thermal conductivity Teflon film, and 3. Spraying liquid nitrogen intermittently on the coated SS surface. In general, the results indicate that all three methods effectively produced higher spray thermal efficiencies and reduced liquid nitrogen mass consumption. However, it was also found that the Teflon coating was more effective than the flow pulsing due to that the Teflon coating induced a large surface temperature drop at the beginning of the chilldown that allowed the quenching to move quickly from poor heat transfer film boiling to efficient heat transfer transition and nucleate boiling regimes. This quick transition shortens the film boiling period, thus facilitates the switch to much higher heat transfer transition boiling and nucleate boiling periods earlier to complete the chilldown process faster.


2019 ◽  
Vol 16 (1) ◽  
pp. 33-44 ◽  
Author(s):  
M.K. Islam ◽  
Md. Hasanuzzaman ◽  
N.A. Rahim ◽  
A. Nahar

Sustainable power generation, energy security, and global warming are the big challenges to the world today. These issues may be addressed through the increased usage of renewable energy resources and concentrated solar energy can play a vital role in this regard. The performance of a parabolic-trough collector’s receiver is here investigated analytically and experimentally using water based and therminol-VP1based CuO, ZnO, Al2O3, TiO2, Cu, Al, and SiC nanofluids. The receiver size has been optimized by a simulation program written in MATLAB. Thus, numerical results have been validated by experimental outcomes under same conditions using the same nanofluids. Increased volumetric concentrations of nanoparticle is found to enhance heat transfer, with heat transfer coefficient the maximum in W-Cu and VP1-SiC, the minimum in W-TiO2 and VP1-ZnO at 0.8 kg/s flow rate. Changing the mass flow rate also affects heat transfer coefficient. It has been observed that heat transfer coefficient reaches its maximum of 23.30% with SiC-water and 23.51% with VP1-SiC when mass-flow rate is increased in laminar flow. Heat transfer enhancement drops during transitions of flow from laminar to turbulent. The maximum heat transfer enhancements of 9.49% and 10.14% were achieved with Cu-water and VP1-SiC nanofluids during turbulent flow. The heat transfer enhancements of nanofluids seem to remain constant when compared with base fluids during either laminar flow or turbulent flow.


Sign in / Sign up

Export Citation Format

Share Document