Numerical Computation of the Performance Map of a Supercritical CO2 Radial Compressor by Means of Three-Dimensional CFD Simulations

Author(s):  
Enrico Rinaldi ◽  
Rene Pecnik ◽  
Piero Colonna

The performance map of a radial compressor operating with supercritical CO2 is numerically computed by means of three dimensional steady state Reynolds-averaged Navier–Stokes simulations. The results concern a 250 kW prototype. An in-house fluid dynamic solver is coupled with a thermodynamic library which ensures the highest accuracy of the thermophysical properties evaluation. Look-up table interpolation is used in order to reduce the computational cost, while keeping the desired level of accuracy in the fluid characterization. The compressor map is calculated considering three different rotational speeds (45 krpm, 50 krpm, and 55 krpm). For each speed-line several mass flow rates are simulated. Numerical results are compared to experimental data to prove the potential of the methodology.

Author(s):  
Enrico Rinaldi ◽  
Rene Pecnik ◽  
Piero Colonna

The performance map of a radial compressor operating with supercritical CO2 is computed by means of three-dimensional steady state Reynolds-averaged Navier–Stokes simulations. The geometry investigated is part of a 250 kW prototype which was tested at Sandia National Laboratories (SNL). An in-house fluid dynamic solver is coupled with a lookup table algorithm to evaluate the fluid properties. Tables are generated using a multiparameter equation of state, which ensures high accuracy in the fluid characterization. The compressor map is calculated considering three different rotational speeds (45 krpm, 50 krpm, and 55 krpm). For each speed-line, several mass flow rates are simulated. Numerical results are compared to experimental data from SNL to prove the potential of the methodology.


2004 ◽  
Vol 126 (2) ◽  
pp. 268-276 ◽  
Author(s):  
Paolo Boncinelli ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Massimiliano Cecconi ◽  
Carlo Cortese

A numerical model was included in a three-dimensional viscous solver to account for real gas effects in the compressible Reynolds averaged Navier-Stokes (RANS) equations. The behavior of real gases is reproduced by using gas property tables. The method consists of a local fitting of gas data to provide the thermodynamic property required by the solver in each solution step. This approach presents several characteristics which make it attractive as a design tool for industrial applications. First of all, the implementation of the method in the solver is simple and straightforward, since it does not require relevant changes in the solver structure. Moreover, it is based on a low-computational-cost algorithm, which prevents a considerable increase in the overall computational time. Finally, the approach is completely general, since it allows one to handle any type of gas, gas mixture or steam over a wide operative range. In this work a detailed description of the model is provided. In addition, some examples are presented in which the model is applied to the thermo-fluid-dynamic analysis of industrial turbomachines.


Author(s):  
Paolo Boncinelli ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Massimiliano Cecconi ◽  
Carlo Cortese

A numerical model was included in a three-dimensional viscous solver to account for real gas effects in the compressible Reynolds Averaged Navier-Stokes (RANS) equations. The behavior of real gases is reproduced by using gas property tables. The method consists of a local fitting of gas data to provide the thermodynamic property required by the solver in each solution step. This approach presents several characteristics which make it attractive as a design tool for industrial applications. First of all, the implementation of the method in the solver is simple and straightforward, since it does not require relevant changes in the solver structure. Moreover, it is based on a low-computational-cost algorithm, which prevents a considerable increase in the overall computational time. Finally, the approach is completely general, since it allows one to handle any type of gas, gas mixture or steam over a wide operative range. In this work a detailed description of the model is provided. In addition, some examples are presented in which the model is applied to the thermo-fluid-dynamic analysis of industrial turbomachines.


Author(s):  
Eiman B Saheby ◽  
Xing Shen ◽  
Anthony P Hays ◽  
Zhang Jun

This study describes the aerodynamic efficiency of a forebody–inlet configuration and computational investigation of a drone system, capable of sustainable supersonic cruising at Mach 1.60. Because the whole drone configuration is formed around the induction system and the design is highly interrelated to the flow structure of forebody and inlet efficiency, analysis of this section and understanding its flow pattern is necessary before any progress in design phases. The compression surface is designed analytically using oblique shock patterns, which results in a low drag forebody. To study the concept, two inlet–forebody geometries are considered for Computational Fluid Dynamic simulation using ANSYS Fluent code. The supersonic and subsonic performance, effects of angle of attack, sideslip, and duct geometries on the propulsive efficiency of the concept are studied by solving the three-dimensional Navier–Stokes equations in structured cell domains. Comparing the results with the available data from other sources indicates that the aerodynamic efficiency of the concept is acceptable at supersonic and transonic regimes.


Author(s):  
Filippo Rubechini ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Stefano Cecchi ◽  
Federico Dacca`

A three-dimensional, multistage, Navier-Stokes solver is applied to the numerical investigation of a four stage low-pressure steam turbine. The thermodynamic behavior of the wet steam is reproduced by adopting a real-gas model, based on the use of gas property tables. Geometrical features and flow-path details consistent with the actual turbine geometry, such as cavity purge flows, shroud leakage flows and partspan snubbers, are accounted for, and their impact on the turbine performance is discussed. These details are included in the analysis using simple models, which prevent a considerable growth of the computational cost and make the overall procedure attractive as a design tool for industrial purposes. Shroud leakage flows are modeled by means of suitable endwall boundary conditions, based on coupled sources and sinks, while body forces are applied to simulate the presence of the damping wires on the blades. In this work a detailed description of these models is provided, and the results of computations are compared with experimental measurements.


2006 ◽  
Vol 128 (6) ◽  
pp. 1394-1399 ◽  
Author(s):  
Donghyun You ◽  
Meng Wang ◽  
Rajat Mittal ◽  
Parviz Moin

A novel structured grid approach which provides an efficient way of treating a class of complex geometries is proposed. The incompressible Navier-Stokes equations are formulated in a two-dimensional, generalized curvilinear coordinate system complemented by a third quasi-curvilinear coordinate. By keeping all two-dimensional planes defined by constant third coordinate values parallel to one another, the proposed approach significantly reduces the memory requirement in fully three-dimensional geometries, and makes the computation more cost effective. The formulation can be easily adapted to an existing flow solver based on a two-dimensional generalized coordinate system coupled with a Cartesian third direction, with only a small increase in computational cost. The feasibility and efficiency of the present method have been assessed in a simulation of flow over a tapered cylinder.


1988 ◽  
Vol 110 (3) ◽  
pp. 315-325 ◽  
Author(s):  
L. T. Tam ◽  
A. J. Przekwas ◽  
A. Muszynska ◽  
R. C. Hendricks ◽  
M. J. Braun ◽  
...  

A numerical model based on a transformed, conservative form of the three-dimensional Navier-Stokes equations and an analytical model based on “lumped” fluid parameters are presented and compared with studies of modeled rotor/bearing/seal systems. The rotor destabilizing factors are related to the rotative character of the flow field. It is shown that these destabilizing factors can be reduced through a descrease in the fluid average circumferential velocity. However, the rotative character of the flow field is a complex three-dimensional system with bifurcated secondary flow patterns that significantly alter the fluid circumferential velocity. By transforming the Navier-Stokes equations to those for a rotating observer and using the numerical code PHOENICS-84 with a nonorthogonal body fitted grid, several numerical experiments were carried out to demonstrate the character of this complex flow field. In general, fluid injection and/or preswirl of the flow field opposing the shaft rotation significantly intensified these secondary recirculation zones and thus reduced the average circumferential velocity, while injection or preswirl in the direction of rotation significantly weakened these zones. A decrease in average circumferential velocity was related to an increase in the strength of the recirculation zones and thereby promoted stability. The influence of the axial flow was analyzed. The lumped model of fluid dynamic force based on the average circumferential velocity ratio (as opposed to the bearing/seal coefficient model) well described the obtained results for relatively large but limited ranges of parameters. This lumped model is extremely useful in rotor/bearing/seal system dynamic analysis and should be widely recommended. Fluid dynamic forces and leakage rates were calculated and compared with seal data where the working fluid was bromotrifluoromethane (CBrF3). The radial and tangential force predictions were in reasonable agreement with selected experimental data. Nonsynchronous perturbation provided meaningful information for system lumped parameter identification from numerical experiment data.


2016 ◽  
Vol 120 (1232) ◽  
pp. 1509-1533 ◽  
Author(s):  
B. Lütke ◽  
J. Nuhn ◽  
Y. Govers ◽  
M. Schmidt

ABSTRACTThe aerodynamic and structural design of a pitching blade tip with a double-swept planform is presented. The authors demonstrate how high-fidelity finite element (FE) and computational fluid dynamic (CFD) simulations are successfully used in the design phase. Eigenfrequencies, deformation, and stress distributions are evaluated by means of a three-dimensional (3D) FE model. Unsteady Reynolds-averaged Navier-Stokes (RANS) simulations are compared to experimental data for a light dynamic stall case atMa= 0.5,Re= 1.2 × 106. The results show a very good agreement as long as the flow stays attached. Tendencies for the span-wise location of separation are captured. As soon as separation sets in, discrepancies between experimental and numerical data are observed. The experimental data show that for light dynamic stall cases atMa= 0.5, a factor of safety ofFoS= 2.0 is sufficient if the presented simulation methods are used.


Author(s):  
Andrea Arnone ◽  
Roberto Pacciani

A recently developed, time-accurate multigrid viscous solver has been extended to handle quasi-three-dimensional effects and applied to the first stage of a modern transonic compressor. Interest is focused on the inlet guide vane (IGV):rotor interaction where strong sources of unsteadiness are to be expected. Several calculations have been performed to predict the stage operating characteristics. Flow structures at various mass flow rates, from choke to near stall, are presented and discussed. Comparisons between unsteady and steady pitch-averaged results are also included in order to obtain indications about the capabilities of steady, multi-row analyses.


Author(s):  
Yannis Kallinderis ◽  
Hyung Taek Ahn

Numerical prediction of vortex-induced vibrations requires employment of the unsteady Navier-Stokes equations. Current Navier-Stokes solvers are quite expensive for three-dimensional flow-structure applications. Acceptance of Computational Fluid Dynamics as a design tool for the offshore industry requires improvements to current CFD methods in order to address the following important issues: (i) stability and computation cost of the numerical simulation process, (ii) restriction on the size of the allowable time-step due to the coupling of the flow and structure solution processes, (iii) excessive number of computational elements for 3-D applications, and (iv) accuracy and computational cost of turbulence models used for high Reynolds number flow. The above four problems are addressed via a new numerical method which employs strong coupling between the flow and the structure solutions. Special coupling is also employed between the Reynolds-averaged Navier-Stokes equations and the Spalart-Allmaras turbulence model. An element-type independent spatial discretization scheme is also presented which can handle general hybrid meshes consisting of hexahedra, prisms, pyramids, and tetrahedral.


Sign in / Sign up

Export Citation Format

Share Document