Low Emission, Liquid Fuel Combustion System for Conventional and Alternative Fuels Developed by the Scaling Analysis

Author(s):  
Yonas G. Niguse ◽  
Ajay K. Agrawal

The objective of this study is to develop a theoretical basis for scalability considerations and design of a large scale combustor utilizing flow blurring (FB) atomization. FB atomization is a recently discovered twin-fluid atomization concept, reported to produce fine spray of liquids with wide range of viscosities. Previously, we have developed and investigated a small scale swirl-stabilized combustor of 7-kWth capacity. Spray measurements have shown that the FB injector’s atomization capability is superior when compared to other techniques, such as air blast atomization. However, despite these favorable results, scalability of the FB injector and associated combustor design has never been explored for large capacity, for example, for gas turbine applications. In this study, a number of dimensionless scaling parameters that affect the processes of atomization, fuel-air mixing, and combustion are analyzed, and scaling criteria for the different components of the combustion system are selected. Constant velocity criterion is used to scale key geometric components of the system. Scaling of the nonlinear dimensions and complex geometries, such as swirler vanes and internal parts of the injector is undertaken through phenomenological analysis of the flow processes associated with the scaled component. A scaled up 60-kWth capacity combustor with FB injector is developed and investigated for combustion performance using diesel and vegetable oil (soybean oil) as fuels. Results show that the scaled-up injector’s performance is comparable to the smaller scale system in terms of flame quality, emission levels, and static flame stability. Visual flame images at different air to liquid ratio by mass (ALR) show mainly blue flames, especially for ALR > 2.8. Emission measurements show a general trend of lower CO and NOx levels at higher ALRs, replicating the performance of the small scale combustion system. Flame liftoff height at different ALRs is similar for both scales. The scaled-up combustor with FB injector preformed robustly with uncompromised stability for the range of firing rates above 50% of the design capacity. Experimental results corroborate with the scaling methodology developed in this research.

Author(s):  
Yonas Niguse ◽  
Ajay Agrawal

The objective of this study is to develop a theoretical basis for scalability considerations and design of a large-scale combustor utilizing flow blurring (FB) atomization. FB atomization is a recently discovered twin-fluid atomization concept, reported to produce fine spray of liquids with wide range of viscosities. Previously, we have developed and investigated a small-scale swirl-stabilized combustor of 7-kWth capacity. Spray measurements have shown that the FB injector's atomization capability is superior when compared to other techniques, such as air blast atomization. However, despite these favorable results, scalability of the FB injector and associated combustor design has never been explored for large capacity; for example, for gas turbine applications. In this study, a number of dimensionless scaling parameters that affect the processes of atomization, fuel–air mixing, and combustion are analyzed, and scaling criteria for the different components of the combustion system are selected. Constant velocity criterion is used to scale key geometric components of the system. Scaling of the nonlinear dimensions and complex geometries, such as swirler vanes and internal parts of the injector is undertaken through phenomenological analysis of the flow processes associated with the scaled component. A scaled-up 60-kWth capacity combustor with FB injector is developed and investigated for combustion performance using diesel and vegetable oil (VO) (soybean oil) as fuels. Results show that the scaled-up injector's performance is comparable to the smaller scale system in terms of flame quality, emission levels, and static flame stability. Visual flame images at different atomizing air-to-liquid ratio by mass (ALR) show mainly blue flames, especially for ALR > 2.8. Emission measurements show a general trend of lower CO and NOx levels at higher ALRs, replicating the performance of the small-scale combustion system. Flame liftoff height at different ALRs is similar for both scales. The scaled-up combustor with FB injector preformed robustly with uncompromised stability for the range of firing rates (FRs) above 50% of the design capacity. Experimental results corroborate with the scaling methodology developed in this research.


Author(s):  
Festus Eghe Agbonzikilo ◽  
Ieuan Owen ◽  
Jill Stewart ◽  
Suresh Kumar Sadasivuni ◽  
Mike Riley ◽  
...  

This paper presents the results of an investigation in which the fuel/air mixing process in a single slot within the radial swirler of a dry low emission (DLE) combustion system is explored using air/air mixing. Experimental studies have been carried out on an atmospheric test facility in which the test domain is a large-scale representation of a swirler slot from a Siemens proprietary DLE combustion system. Hot air with a temperature of 300 °C is supplied to the slot, while the injected fuel gas is simulated using air jets with temperatures of about 25 °C. Temperature has been used as a scalar to measure the mixing of the jets with the cross-flow. The mixture temperatures were measured using thermocouples while Pitot probes were used to obtain local velocity measurements. The experimental data have been used to validate a computational fluid dynamics (CFD) mixing model. Numerical simulations were carried out using CFD software ansys-cfx. Due to the complex three-dimensional flow structure inside the swirler slot, different Reynolds-averaged Navier–Stokes (RANS) turbulence models were tested. The shear stress transport (SST) turbulence model was observed to give best agreement with the experimental data. The momentum flux ratio between the main air flow and the injected fuel jet, and the aerodynamics inside the slot were both identified by this study as major factors in determining the mixing characteristics. It has been shown that mixing in the swirler can be significantly improved by exploiting the aerodynamic characteristics of the flow inside the slot. The validated CFD model provides a tool which will be used in future studies to explore fuel/air mixing at engine conditions.


2015 ◽  
Vol 138 (5) ◽  
Author(s):  
Festus Eghe Agbonzikilo ◽  
Ieuan Owen ◽  
Suresh Kumar Sadasivuni ◽  
Ronald A. Bickerton

This paper is concerned with optimizing the fuel–air mixing processes that take place within the radial swirler slot of a dry low emission (DLE) combustion system. The aerodynamics of the flow within the slot is complex and this, together with the placement of the fuel holes with cross injection, controls the mixing of the fuel and air. Computational fluid dynamics (CFD) with the shear stress transport (SST) (k–ω) turbulence model was used for flow and mixing predictions within the radial swirler slot and for conducting a CFD-based design of experiments (DOE) optimization study, in which different parameters related to the fuel injection holes were varied. The optimization study was comprised of 25 orthogonal design configurations in the Taguchi L25 orthogonal array (OA). The test domain for the CFD, and its experimental validation, was a large-scale representation of a swirler slot from the Siemens proprietary DLE combustion system. The DOE study showed that the number of fuel holes, injection hole diameter, and interhole distance are the most influential parameters for determining optimal fuel mixing. Consequently, the optimized mixing configuration obtained from the above study was experimentally tested on an atmospheric test facility. The mixing patterns from experiments at various axial locations across the slot are in good agreement with the mixing predictions from the optimal CFD model. The optimized fuel injection design improved mixing compared with the baseline design by about 60%.


Author(s):  
Festus Eghe Agbonzikilo ◽  
Jill Stewart ◽  
Suresh Kumar Sadasivuni ◽  
Ieuan Owen ◽  
Mike Riley ◽  
...  

This paper presents the results of an investigation in which the fuel/air mixing process in a single slot within the radial swirler of a dry low emission (DLE) combustion system is explored using air/air mixing. Experimental studies have been carried out on an atmospheric test facility in which the test domain is a large-scale representation of a swirler slot from a Siemens DLE SGT-400 combustion system. Hot air with a temperature of 300°C is supplied to the slot, while the injected fuel gas is represented using air jets with temperatures of about 25°C. Temperature has been used as a scalar to measure the mixing of the jets with the cross-flow. The mixture temperatures were measured using thermocouples while Pitot probes were used to obtain local velocity measurements. The experimental data have been used to validate a computational fluid dynamics (CFD) mixing model. Numerical simulations were carried out using CFD software ANSYS-CFX. Due to the complex three-dimensional flow structure inside the swirler slot, different RANS turbulence models were tested. The shear stress transport (SST) turbulence model was observed to give best agreement with the experimental data. The momentum flux ratio between the main air flow and the injected fuel jet, and the aerodynamics inside the slot, were both identified by this study as major factors in determining the mixing characteristics. It has been shown that mixing in the swirler can be significantly improved by exploiting the aerodynamic characteristics of the flow inside the slot. The validated CFD model provides a tool which will be used in future studies to explore fuel/air mixing at engine conditions.


Author(s):  
Festus Eghe Agbonzikilo ◽  
Ieuan Owen ◽  
Suresh Kumar Sadasivuni ◽  
Ronald A. Bickerton

This paper presents the results of a detailed investigation of the fuel-air mixing processes that take place within the radial swirler slot of a dry low emission combustion system. The aerodynamics of the flow within the slot is complex and this, together with the placement of the fuel holes with cross injection, controls the mixing of the fuel and air. Computational fluid dynamics (CFD) with the Shear Stress Transport (k-ω) turbulence model was used for flow and mixing predictions within the radial swirler slot and for conducting a CFD-based Design of Experiments (DOE) optimisation study, in which different parameters related to the fuel injection holes were varied. The optimisation study was comprised of 25 orthogonal design configurations in a Taguchi L25 orthogonal array. The test domain for the CFD, and its experimental validation, was a large-scale representation of a swirler slot from a Siemens proprietary DLE combustion system. The DOE study showed that the number of fuel holes, injection hole diameter and inter-hole distance are the most influential parameters for determining optimal fuel mixing. Consequently, the optimised mixing configuration obtained from the above study was experimentally tested on an atmospheric test facility. The mixing patterns from experiments at various axial locations across the slot are in good agreement with the mixing predictions from the optimal CFD model. The optimised fuel injection design improved mixing compared with the original design by about 60%.


2000 ◽  
Vol 663 ◽  
Author(s):  
J. Samper ◽  
R. Juncosa ◽  
V. Navarro ◽  
J. Delgado ◽  
L. Montenegro ◽  
...  

ABSTRACTFEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of waste in a high level radioactive waste repository (HLWR). It includes two main experiments: an situ full-scale test performed at Grimsel (GTS) and a mock-up test operating since February 1997 at CIEMAT facilities in Madrid (Spain) [1,2,3]. One of the objectives of FEBEX is the development and testing of conceptual and numerical models for the thermal, hydrodynamic, and geochemical (THG) processes expected to take place in engineered clay barriers. A significant improvement in coupled THG modeling of the clay barrier has been achieved both in terms of a better understanding of THG processes and more sophisticated THG computer codes. The ability of these models to reproduce the observed THG patterns in a wide range of THG conditions enhances the confidence in their prediction capabilities. Numerical THG models of heating and hydration experiments performed on small-scale lab cells provide excellent results for temperatures, water inflow and final water content in the cells [3]. Calculated concentrations at the end of the experiments reproduce most of the patterns of measured data. In general, the fit of concentrations of dissolved species is better than that of exchanged cations. These models were later used to simulate the evolution of the large-scale experiments (in situ and mock-up). Some thermo-hydrodynamic hypotheses and bentonite parameters were slightly revised during TH calibration of the mock-up test. The results of the reference model reproduce simultaneously the observed water inflows and bentonite temperatures and relative humidities. Although the model is highly sensitive to one-at-a-time variations in model parameters, the possibility of parameter combinations leading to similar fits cannot be precluded. The TH model of the “in situ” test is based on the same bentonite TH parameters and assumptions as for the “mock-up” test. Granite parameters were slightly modified during the calibration process in order to reproduce the observed thermal and hydrodynamic evolution. The reference model captures properly relative humidities and temperatures in the bentonite [3]. It also reproduces the observed spatial distribution of water pressures and temperatures in the granite. Once calibrated the TH aspects of the model, predictions of the THG evolution of both tests were performed. Data from the dismantling of the in situ test, which is planned for the summer of 2001, will provide a unique opportunity to test and validate current THG models of the EBS.


Author(s):  
Neil Kelley ◽  
Maureen Hand ◽  
Scott Larwood ◽  
Ed McKenna

The accurate numerical dynamic simulation of new large-scale wind turbine designs operating over a wide range of inflow environments is critical because it is usually impractical to test prototypes in a variety of locations. Large turbines operate in a region of the atmospheric boundary layer that currently may not be adequately simulated by present turbulence codes. In this paper, we discuss the development and use of a 42-m (137-ft) planar array of five, high-resolution sonic anemometers upwind of a 600-kW wind turbine at the National Wind Technology Center (NWTC). The objective of this experiment is to obtain simultaneously collected turbulence information from the inflow array and the corresponding structural response of the turbine. The turbulence information will be used for comparison with that predicted by currently available codes and establish any systematic differences. These results will be used to improve the performance of the turbulence simulations. The sensitivities of key elements of the turbine aeroelastic and structural response to a range of turbulence-scaling parameters will be established for comparisons with other turbines and operating environments. In this paper, we present an overview of the experiment, and offer examples of two observed cases of inflow characteristics and turbine response collected under daytime and nighttime conditions, and compare their turbulence properties with predictions.


2018 ◽  
Vol 856 ◽  
pp. 135-168 ◽  
Author(s):  
S. T. Salesky ◽  
W. Anderson

A number of recent studies have demonstrated the existence of so-called large- and very-large-scale motions (LSM, VLSM) that occur in the logarithmic region of inertia-dominated wall-bounded turbulent flows. These regions exhibit significant streamwise coherence, and have been shown to modulate the amplitude and frequency of small-scale inner-layer fluctuations in smooth-wall turbulent boundary layers. In contrast, the extent to which analogous modulation occurs in inertia-dominated flows subjected to convective thermal stratification (low Richardson number) and Coriolis forcing (low Rossby number), has not been considered. And yet, these parameter values encompass a wide range of important environmental flows. In this article, we present evidence of amplitude modulation (AM) phenomena in the unstably stratified (i.e. convective) atmospheric boundary layer, and link changes in AM to changes in the topology of coherent structures with increasing instability. We perform a suite of large eddy simulations spanning weakly ($-z_{i}/L=3.1$) to highly convective ($-z_{i}/L=1082$) conditions (where$-z_{i}/L$is the bulk stability parameter formed from the boundary-layer depth$z_{i}$and the Obukhov length $L$) to investigate how AM is affected by buoyancy. Results demonstrate that as unstable stratification increases, the inclination angle of surface layer structures (as determined from the two-point correlation of streamwise velocity) increases from$\unicode[STIX]{x1D6FE}\approx 15^{\circ }$for weakly convective conditions to nearly vertical for highly convective conditions. As$-z_{i}/L$increases, LSMs in the streamwise velocity field transition from long, linear updrafts (or horizontal convective rolls) to open cellular patterns, analogous to turbulent Rayleigh–Bénard convection. These changes in the instantaneous velocity field are accompanied by a shift in the outer peak in the streamwise and vertical velocity spectra to smaller dimensionless wavelengths until the energy is concentrated at a single peak. The decoupling procedure proposed by Mathiset al.(J. Fluid Mech., vol. 628, 2009a, pp. 311–337) is used to investigate the extent to which amplitude modulation of small-scale turbulence occurs due to large-scale streamwise and vertical velocity fluctuations. As the spatial attributes of flow structures change from streamwise to vertically dominated, modulation by the large-scale streamwise velocity decreases monotonically. However, the modulating influence of the large-scale vertical velocity remains significant across the stability range considered. We report, finally, that amplitude modulation correlations are insensitive to the computational mesh resolution for flows forced by shear, buoyancy and Coriolis accelerations.


2020 ◽  
Author(s):  
Yuan Yuan ◽  
Lei Lin

Satellite image time series (SITS) classification is a major research topic in remote sensing and is relevant for a wide range of applications. Deep learning approaches have been commonly employed for SITS classification and have provided state-of-the-art performance. However, deep learning methods suffer from overfitting when labeled data is scarce. To address this problem, we propose a novel self-supervised pre-training scheme to initialize a Transformer-based network by utilizing large-scale unlabeled data. In detail, the model is asked to predict randomly contaminated observations given an entire time series of a pixel. The main idea of our proposal is to leverage the inherent temporal structure of satellite time series to learn general-purpose spectral-temporal representations related to land cover semantics. Once pre-training is completed, the pre-trained network can be further adapted to various SITS classification tasks by fine-tuning all the model parameters on small-scale task-related labeled data. In this way, the general knowledge and representations about SITS can be transferred to a label-scarce task, thereby improving the generalization performance of the model as well as reducing the risk of overfitting. Comprehensive experiments have been carried out on three benchmark datasets over large study areas. Experimental results demonstrate the effectiveness of the proposed method, leading to a classification accuracy increment up to 1.91% to 6.69%. <div><b>This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.</b></div>


Oceanography ◽  
2021 ◽  
Vol 34 (1) ◽  
pp. 58-75
Author(s):  
Michel Boufadel ◽  
◽  
Annalisa Bracco ◽  
Eric Chassignet ◽  
Shuyi Chen ◽  
...  

Physical transport processes such as the circulation and mixing of waters largely determine the spatial distribution of materials in the ocean. They also establish the physical environment within which biogeochemical and other processes transform materials, including naturally occurring nutrients and human-made contaminants that may sustain or harm the region’s living resources. Thus, understanding and modeling the transport and distribution of materials provides a crucial substrate for determining the effects of biological, geological, and chemical processes. The wide range of scales in which these physical processes operate includes microscale droplets and bubbles; small-scale turbulence in buoyant plumes and the near-surface “mixed” layer; submesoscale fronts, convergent and divergent flows, and small eddies; larger mesoscale quasi-geostrophic eddies; and the overall large-scale circulation of the Gulf of Mexico and its interaction with the Atlantic Ocean and the Caribbean Sea; along with air-sea interaction on longer timescales. The circulation and mixing processes that operate near the Gulf of Mexico coasts, where most human activities occur, are strongly affected by wind- and river-induced currents and are further modified by the area’s complex topography. Gulf of Mexico physical processes are also characterized by strong linkages between coastal/shelf and deeper offshore waters that determine connectivity to the basin’s interior. This physical connectivity influences the transport of materials among different coastal areas within the Gulf of Mexico and can extend to adjacent basins. Major advances enabled by the Gulf of Mexico Research Initiative in the observation, understanding, and modeling of all of these aspects of the Gulf’s physical environment are summarized in this article, and key priorities for future work are also identified.


Sign in / Sign up

Export Citation Format

Share Document