On the Effect of Axial Spacing Between Rotor and Stator Onto the Blade Vibrations of a Low Pressure Turbine Stage at Engine Relevant Operating Conditions

Author(s):  
Andreas Marn ◽  
Florian Schönleitner ◽  
Mathias Mayr ◽  
Thorsten Selic ◽  
Franz Heitmeir

In order to achieve the ACARE targets regarding reduction of emissions, it is essential to reduce fuel consumption drastically. Reducing engine weight is supporting this target and one option to reduce weight is to reduce the overall engine length (shorter shafts, nacelle). However, to achieve a reduction in engine length, the spacing between stator and rotor can be minimised, thus changing the rotor blade excitation. Related to the axial spacing, a number of excitation mechanisms with respect to the rotor blading must already be considered during the design process. Based on these facts several setups have been investigated at different engine relevant operating points and axial spacing between the stator and rotor in the subsonic test turbine facility (STTF-AAAI) at the Institute for Thermal Turbomachinery and Machine Dynamics at Graz University of Technology. In order to avoid upstream effects of supporting struts, these struts are located far downstream of the stage which is under investigation. For rotor blade vibration measurements, a novel telemetry system in combination with strain gauges is applied. To the best of the author’s knowledge, the present paper is the first report of blade vibration measurements within a rotating system in the area of low pressure turbines under engine relevant operating conditions. In addition, aerodynamic measurements including unsteady flow measurements have been conducted, but will not be presented in this paper. By analysing the flow field, aerodynamic excitation mechanisms can be identified and assigned to the blade vibration. However, this is not presented in this paper. Within this paper, the flow fields are analysed in both upstream and downstream of the turbine stage, visualised for two axial gaps and then compared to the forced response of the blading. Detailed structural dynamic investigations show critical modes during the operation which are identified by the telemetry measurements as well. Finally the influence of the axial spacing regarding the rotor blade excitation and vibration can be elaborated and is prepared to get a better understanding of basic mechanisms. The paper shows that reducing axial spacing is a promising option for reducing engine weight, but aeroelasticity must be carefully taken into account.

Author(s):  
F. Schönleitner ◽  
T. Selic ◽  
C. Schitter ◽  
F. Heitmeir ◽  
A. Marn

Exit guide vanes of turbine exit casings are designed to meet aerodynamic, structural and acoustic criteria. New low pressure turbine architectures of aero engines try to optimize components weight in order to decrease the fuel consumption and reduce noise emissions. For this purpose different designs of turbine exit guide vanes (TEGV) exist which vary geometry as well as the number of vanes in the casing. In the subsonic test turbine facility at the Institute for Thermal Turbomachinery and Machine Dynamics of Graz University of Technology, which represents a 1 ½ low pressure turbine stage, the upstream effect of these innovative turbine exit casings (TEC) designs is under investigation. Up to now the influence of the turbine exit casing in relation to the aerodynamic vibration excitation of the rotor blading is not well known. For rotor blade vibration measurements a telemetry system in combination with strain gauges is applied. The present paper is a report of blade vibration measurements within a rotating system in the area of low pressure turbines under engine relevant operating conditions. Within the test phase different turbine exit casings are under investigation at two different operating points (OP). These turbine exit casings represent different design goals, e.g. aerodynamically optimization was performed to reduce losses at the aero design point or an acoustically optimization was done to reduce noise emission at the operating point approach. All these different design intents lead to a changed upstream effect, thus changing rotor blade vibrations. To identify parameters affecting blade vibration attention is paid to aerodynamic measurements as well. Selected results of steady and unsteady flow field measurements are analyzed to draw conclusions. The upstream effect of different turbine exit casings can be quantified at OP1. Depending on the vane number both the potential effect of the TEGV increase and the upstream effect as well. Aerodynamic as well as acoustic improvements as wanted with H-TEC and inverse-cut-off TEC lead to unfavorable conditions and higher blade loading in comparison to the referenced TEC. OP2 provides additional information of downstream effects. Due to the stator vane number the rotor blading is excited in its 4th eigenfrequency. The comparison between all investigated turbine exit casings with respect to the referenced configuration provides a basis for numerical code validation and future developments.


Author(s):  
David Hemberger ◽  
Roberto De Santis ◽  
Dietmar Filsinger

As a means of meeting ever increasing emissions and fuel economy demands car manufacturers are using aggressive engine downsizing. To maintain the power output of the engine turbocharging is typically used. Compared to Mono scroll turbines, with a multi-entry system the individual volute sizing can be better matched to the single mass flow pulse from the engine cylinders. The exhaust pulse energy can be better utilised by the turbocharger turbine improving turbocharger response. Additionally the interaction of the engine exhaust pulses can be better avoided, improving the scavenging of the engine. Besides the thermodynamic advantages, the multi-entry turbine represents a challenge to the structural dynamic design of the turbine. A higher number of turbine wheel resonance points can be expected during operation. In addition, the increased use of exhaust pulse energy leads to a distinct accentuation of the blade vibration excitation. Using validated engine models, the interaction of the multi-entry turbine with the engine has been analyzed and various operating points, which may be critical for the blade vibration excitation, have been classified. These operating points deliver the input variables for unsteady computational flow dynamics (CFD) analyses. From these calculations unsteady blade forces were derived providing the necessary boundary conditions for the structural dynamic analyses by spatially and temporally high-resolved absolute pressures on the turbine surface. Goal of the investigation is to identify critical operating conditions. Important is also to investigate the effect of a scroll connection valve on blade excitation. The investigations utilize validated tools that were introduced and successfully applied to several turbine types in a series of publications over recent years. It can be stated that the engine operating condition and the admission type significantly influence the forced response reaction of the blade to the different excitation orders (EO). In case of equal admission even (or multiples of two) EOs generate the largest dynamic blade stress as can be expected due to the two turbine inlet segments. This reaction also increases with the engine speed. In the case of unequal admission, the odd EOs produce the largest forced response reaction. The maximum dynamic blade stress occurs in the region where the scroll connection is just closed. Above all, the scroll connection valve influences the Beta value and thus the basic behavior — unequal or equal admission. It has been possible to reconstruct the forced response behavior of the turbine blade within an engine combustion cycle. For the first time it could be shown for a double scroll application that there is a significant dynamic blade stress change dependent on the engine crankshaft angle. Certainly, due to the inertia of the mass and damping (mass, structure, flow), the blade will not exactly follow the predicted course. However, it is clear that the transient processes within an engine combustion cycle will affect the dynamic blade stress. This applies to the turbine wheels investigated in the work at hand with low damping, high eigenfrequencies and the considered internal combustion engines — as they are typically used in the passenger car sector.


Author(s):  
Christoph Heinz ◽  
Markus Schatz ◽  
Michael V. Casey ◽  
Heinrich Stu¨er

To guarantee a faultless operation of a turbine it is necessary to know the dynamic performance of the machine especially during start-up and shut-down. In this paper the vibration behaviour of a low pressure model steam turbine which has been intentionally mistuned is investigated at the resonance point of an eigenfrequency crossing an engine order. Strain gauge measurements as well as tip timing analysis have been used, whereby a very good agreement is found between the methods. To enhance the interpretation of the data measured, an analytical mass-spring-model, which incorporates degrees of freedom for the blades as well as for the rotor shaft, is presented. The vibration amplitude varies strongly from blade to blade. This is caused by the mistuning parameters and the coupling through the rotor shaft. This circumferential blade amplitude distribution is investigated at different operating conditions. The results show an increasing aerodynamic coupling with increasing fluid density, which becomes visible in a changing circumferential blade amplitude distribution. Furthermore the blade amplitudes rise non-linearly with increasing flow velocity, while the amplitude distribution is almost independent. Additionally, the mechanical and aerodynamic damping parameters are calculated by means of a non-linear regression method. Based on measurements at different density conditions, it is possible to extrapolate the damping parameters down to vacuum conditions, where aerodynamic damping is absent. Hence the material damping parameter can be determined.


Author(s):  
Jens Aschenbruck ◽  
Christopher E. Meinzer ◽  
Linus Pohle ◽  
Lars Panning-von Scheidt ◽  
Joerg R. Seume

The regeneration of highly loaded turbine blades causes small variations of their geometrical parameters. To determine the influence of such regeneration-induced variances of turbine blades on the nozzle excitation, an existing air turbine is extended by a newly designed stage. The aerodynamic and the structural dynamic behavior of the new turbine stage are analyzed. The calculated eigenfrequencies are verified by an experimental modal analysis and are found to be in good agreement. Typical geometric variances of overhauled turbine blades are then applied to stator vanes of the newly designed turbine stage. A forced response analysis of these vanes is conducted using a uni-directional fluid-structure interaction approach. The effects of geometric variances on the forced response of the rotor blade are evaluated. It is shown that the vibration amplitudes of the response are significantly higher for some modes due to the additional wake excitation that is introduced by the geometrical variances e.g. 56 times higher for typical MRO-induced variations in stagger-angle.


Author(s):  
C. Bréard ◽  
J. S. Green ◽  
M. Vahdati ◽  
M. Imregun

This paper presents an iterative method for determining the resonant speed shift when non-linear friction dampers are included in turbine blade roots. Such a need arises when conducting response calculations for turbine blades where the unsteady aerodynamic excitation must be computed at the exact resonant speed of interest. The inclusion of friction dampers is known to raise the resonant frequencies by up to 20% from the standard assembly frequencies. The iterative procedure uses a viscous, time-accurate flow representation for determining the aerodynamic forcing, a look-up table for evaluating the aerodynamic boundary conditions at any speed, and a time-domain friction damping module for resonance tracking. The methodology was applied to an HP turbine rotor test case where the resonances of interest were due to the 1T and 2F blade modes under 40 engine-order excitation. The forced response computations were conducted using a multi-stage approach in order to avoid errors associated with “linking” single stage computations since the spacing between the two bladerows was relatively small. Three friction damper elements were used for each rotor blade. To improve the computational efficiency, the number of rotor blades was decreased by 2 to 90 in order to obtain a stator/rotor blade ratio of 4/9. However, the blade geometry was skewed in order to match the capacity (mass flow rate) of the components and the condition being analysed. Frequency shifts of 3.2% and 20.0% were predicted for the 1T/40EO and 2F/40EO resonances in about 3 iterations. The predicted frequency shifts and the dynamic behaviour of the friction dampers were found to be within the expected range. Furthermore, the measured and predicted blade vibration amplitudes showed a good agreement, indicating that the methodology can be applied to industrial problems.


Author(s):  
Bjo¨rn Laumert ◽  
Hans Ma˚rtensson ◽  
Torsten H. Fransson

This paper presents a study of the blade pressure perturbation levels and the resulting rotor blade force in three high-pressure transonic turbine stages, based on three-dimensional unsteady viscous computations. The aim is to identify stage characteristics that correlate with the perturbation strength and degree of force realization on the rotor blades. To address the effects of off-design operation, the computations were performed at high subsonic, design and higher vane exit Mach number operating conditions. Furthermore spanwise variations in pressure levels and blade force are addressed. In our investigation the RMS of the pressure perturbations integrated in both time and along the blade surface is utilized as a global measure of the blade pressure perturbation strength on the rotor blade surface. The relative strength of the different pressure perturbation events on the rotor blade surface is also investigated. To obtain information about the relative strength of events related to the blade passing frequency the pressure field is Fourier decomposed in time at different radial positions along the blade arc-length. With the help of the observations and results from the blade pressure study, the radial variations of the unsteady blade force are addressed.


Author(s):  
Milind A. Bakhle ◽  
Jong S. Liu ◽  
Josef Panovsky ◽  
Theo G. Keith ◽  
Oral Mehmed

Forced vibrations in turbomachinery components can cause blades to crack or fail due to high-cycle fatigue. Such forced response problems will become more pronounced in newer engines with higher pressure ratios and smaller axial gap between blade rows. An accurate numerical prediction of the unsteady aerodynamics phenomena that cause resonant forced vibrations is increasingly important to designers. Validation of the computational fluid dynamics (CFD) codes used to model the unsteady aerodynamic excitations is necessary before these codes can be used with confidence. Recently published benchmark data, including unsteady pressures and vibratory strains, for a high-pressure turbine stage makes such code validation possible. In the present work, a three dimensional, unsteady, multi blade-row, Reynolds-Averaged Navier Stokes code is applied to a turbine stage that was recently tested in a short duration test facility. Two configurations with three operating conditions corresponding to modes 2, 3, and 4 crossings on the Campbell diagram are analyzed. Unsteady pressures on the rotor surface are compared with data.


1987 ◽  
Vol 109 (2) ◽  
pp. 155-161 ◽  
Author(s):  
S. H. Moustapha ◽  
U. Okapuu ◽  
R. G. Williamson

This paper describes the performance of a highly loaded single-stage transonic turbine with a pressure ratio of 3.76 and a stage loading factor of 2.47. Tests were carried out with three rotors, covering a range of blade Zweifel coefficient of 0.77 to 1.18. Detailed traversing at rotor inlet and exit allowed an assessment of rotor and stage performance as a function of blade loading under realistic operating conditions. The effect of stator endwall contouring on overall stage performance was also investigated using two different contours with the same vane design.


1998 ◽  
Vol 120 (2) ◽  
pp. 410-417 ◽  
Author(s):  
B. D. Yang ◽  
C. H. Menq

Friction dampers are often used in turbine design to attenuate blade vibration to acceptable levels so as to prolong blades’ service life. A wedge damper, also called a self-centering, blade-to-blade damper, can provide more design flexibility to meet various needs in different operating conditions when compared with conventional platform dampers. However, direct coupling of the two inclined friction interfaces of the wedge damper often leads to very complex contact kinematics. In Part I of this two-part paper, a dual-interface friction force model is proposed to investigate the coupling contact kinematics. The key issue of the model formulation is to derive analytical criteria for the stick-slip transitions that can be used to precisely simulate the complex stick-slip motion and, thus, the induced friction force as well. When considering cyclic loading, the induced periodic friction forces can be obtained to determine the effective stiffness and damping of the interfaces over a cycle of motion. In Part II of this paper, the estimated stiffness and damping are then incorporated with the harmonic balance method to predict the forced response of a blade constrained by wedge dampers.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Sara Biagiotti ◽  
Juri Bellucci ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Gino Baldi ◽  
...  

Abstract In this work, the effects of turbine center frame (TCF) wakes on the aeromechanical behavior of the downstream low-pressure turbine (LPT) blades are numerically investigated and compared with the experimental data. A small industrial gas turbine has been selected as a test case, composed of a TCF followed by the two low-pressure stages and a turbine rear frame (TRF) before the exhaust plenum. Full annulus unsteady computations of the whole low-pressure module have been performed. Two operating conditions, full (100%) and partial (50%) load, have been investigated with the aim of highlighting the impact of TCF wakes convection and diffusion through the downstream rows. Attention was paid to the harmonic content of rotors’ blades. The results show a slower decay of the wakes through the downstream rows in off-design conditions compared with the design point. The analysis of the rotors’ frequency spectrum reveals that moving from design to off-design conditions, the effect of the TCF does not change significantly. The harmonic contribution of all turbine components has been extracted, highlighting the effect of statoric parts on the last LPT blade. The TCF harmonic content remains the most relevant from an aeromechanic point of view as per experimental evidence, and it is considered for an forced response analysis (FRA) on the last LPT blade itself. Finally, aerodynamic and aeromechanic predictions have been compared with the experimental data to validate the numerical approach. Some general design solutions aimed at mitigating the TCF wakes impact are discussed.


Sign in / Sign up

Export Citation Format

Share Document