Influence of Reynolds Number on the Performance of Process Centrifugal Compressors

Author(s):  
Yan Liu ◽  
Li-hua Tao ◽  
Jian Wang ◽  
Yang Wang ◽  
Xue-jun Wang ◽  
...  

Over the past 60 years, effects of changes in Reynolds number on performance of centrifugal compressors have been widely investigated. However most of cases deal with those compressors with small or medium flow coefficients. Studies on the influence of Reynolds number on centrifugal compressors with large flow coefficients and high machine Mach number are rarely seen in the literature. This paper deals with two types of centrifugal compressors. One type of compressor (Model 1) has a relatively large capacity with high machine Mach number. The flow coefficient and machine Mach number are 0.16 and 1.05 respectively at the design condition. Those design parameters for the other type of compressor (Model 2) are 0.11 and 0.7 respectively. Both experimental and numerical results show that with increase in Re, aerodynamic performance of centrifugal compressors is improved. However, to what extent that improvement is gained depends on properties of the baseline compressor. When Reynolds number of Model 1 becomes about 5 times large due to increase in the inlet pressure, its polytropic efficiency is only improved 0.7% at the design point in experiment. Flow field inside the impeller is similar to its prototype. For Model 2, when Reynolds number becomes 1.78 times large due to scaling up, the polytropic efficiency of the enlarged one is improved about 2% at the design point. These results demonstrate that for a compressor with large flow coefficient and high machine Mach number, i.e. originally high Reynolds number, the influence of Reynolds number on its performance is limited. In addition to experiment and CFD, two empirical formulas are applied to work out performance correction due to a change in Reynolds number for Model 1 and Model 2. Although CFD results are more accurate than the empirical results, empirical formula is still useful to get relatively reliable performance correction.

Author(s):  
Kyoung Ku Ha ◽  
Shin Hyoung Kang

A variety of centrifugal compressors are used in various fields of industry these days. The design requirements are more complicated, and it is difficult to determine the optimal design point of a centrifugal compressor. The aim of this study was to propose an efficient optimization method for centrifugal compressors considering the impeller, the vaneless diffuser, and the overhung type volute. The optimization was performed using the surrogate management framework (SMF). The design parameters were the impeller exit radius, the exit blade angle, and the flow coefficient. Sample points in the design space were selected according to the Design of Experiments (DoE) theory. The CFD simulations were executed on the impeller and the diffuser at every sampled point. The volutes were described using a one-dimensional but reliable theory to reduce the simulation time. An approximation model based on the Kriging method was constructed using this dataset. Then, an optimal design point that minimized the objective function was determined in a substitute design space using the pattern search method because of its efficiency and rigorous convergence. The optimization process, underlying methods, and results are described in this paper.


Author(s):  
Y. Galerkin ◽  
A. Rekstin ◽  
K. Soldatova ◽  
A. Drozdov

Centrifugal compressors for gas industry consume huge amount of energy. As a rule, they are single-shaft, with two or more stages and with comparatively low pressure ratio. Compressors operate at low Mach numbers and high Reynolds numbers. Two design parameters influence mostly stage performances. Stage flow coefficient optimal values lie in range 0.060–0.11. Chosen number of stages establishes value of this coefficient if speed of a rotor rotation is fixed. Design loading factor optimal values are 0.42–0.52. It corresponds to high efficiency, shifts a surge limit far from a design point and makes power maximal in a design point. Some considerations about impeller and diffuser types are presented. Design procedure consists on application of the Universal modeling programs for main dimensions optimization and performance calculations. Q3D non-viscid velocity diagrams are analyzed for optimization of blade configuration. Samples of design are presented, 32 MW single-stage pipeline compressor stage with record efficiency included.


Author(s):  
Kishor Kumar ◽  
R. Prathapanayaka ◽  
S. V. Ramana Murthy ◽  
S. Kishore Kumar ◽  
T. M. Ajay Krishna

This paper describes the aerodynamic design and analysis of a high-pressure, single-stage axial flow turbine suitable for small gas turbine engine application using computational methods. The specifications of turbine were based on the need of a typical high-pressure compressor and geometric restrictions of small gas turbine engine. Baseline design parameters such as flow coefficient, stage loading coefficient are close to 0.23 and 1.22 respectively with maximum flow expansion in the NGV rows. In the preliminary design mode, the meanline approach is used to generate the turbine flow path and the design point performance is achieved by considering three blade sections at hub, mean and tip using the AMDC+KO+MK+BSM loss models to meet the design constraints. An average exit swirl angle of less than 5 degrees is achieved leading to minimum losses in the stage. Also, NGV and rotor blade numbers were chosen based on the optimum blade solidity. Blade profile is redesigned using the results from blade-to-blade analysis and through-flow analysis based on an enhanced Dawes BTOB3D flow solver. Using PbCFD (Pushbutton CFD) and commercially available CFD software ANSYS-CFX, aero-thermodynamic parameters like pressure ratios, aerodynamic power, and efficiencies are computed and these results are compared with one another. The boundary conditions, convergence criterion, and turbulence model used in CFD computations are set uniform for comparison with 8 per cent turbulence intensity. Grid independence study is performed at design point to optimize the grid density for off-design performance predictions. ANSYS-CFX and PbCFD have predicted higher efficiency of 3.4% and 1.2% respectively with respect to targeted efficiency of 89 per cent.


Author(s):  
A. Hildebrandt ◽  
T. Ceyrowsky

The present paper deals with the numerical and theoretical investigations of the effect of geometrical dimensions and 1D-design parameters on the impeller pressure slope of a transonic centrifugal compressor stage for industrial process application. A database being generated during the multi-objective and multi-point design process of a high flow coefficient impeller, comprising 545 CFD (Computational Fluid Dynamics) designs is investigated in off-design and design conditions by means of RANS (Reynolds Averaged Navier Stokes) simulation of an impeller with vaneless diffuser. For high flow coefficients of 0.16 < phi < 0.18, the CFD-setup has been validated against measurement data regarding stage and impeller performance taken from MAN test rig experimental data for a centrifugal compressor stage of similar flow coefficient. The paper aims at answering the question how classical design parameter, such as the impeller blade angle distribution, impeller suction diameter and camber line length affect the local and total relative diffusion and pressure slope towards impeller stall operation. A second order analysis of the CFD database is performed by cross-correlating the CFD data with results from impeller two-zone 1D modelling and a rapid loading calculation process by Stanitz and Prian. The statistical covariance of first order 1D-analysis parameters such as the mixing loss of the impeller secondary flow, the slip factor, impeller flow incidence is analyzed, thereby showing strong correlation with the design and off-design point efficiency and pressure slope. Finally, guide lines are derived in order to achieve either optimized design point efficiency or maximum negative pressure slope characteristics towards impeller stall operation.


1956 ◽  
Vol 60 (541) ◽  
pp. 67-70
Author(s):  
T. A. Thomson

The blow-down type of intermittent, supersonic tunnel is attractive because of its simplicity and because relatively high Reynolds numbers can be obtained for a given size of test section. An adverse characteristic, however, is the fall of stagnation temperature during runs, which can affect experiments in several ways. The Reynolds number varies and the absolute velocity is not constant, even if the Mach number and pressure are; heat-transfer cannot be studied under controlled conditions and the experimental errors arising from the effect of heat-transfer on the boundary layer vary in time. These effects can become significant in quantitative experiments if the tunnel is large and the variation of temperature very rapid; the expense required to eliminate them might then be justified.


1987 ◽  
Vol 109 (4) ◽  
pp. 392-395 ◽  
Author(s):  
J. W. Hollenberg

Reynolds number effects on the performance of a conventional design regenerative pump were investigated, using glycerine-water mixtures, between an impeller tip speed Reynolds number, RT, of 5.0×103 (all glycerine) and 1.6×106 (all water). Results show that the maximum efficiency, nm, can be expressed in terms of an output to loss ratio, nm/1−nm, which varies as RT0.203 for 2.0×104 &lt; RT &lt; 1.6×106 and as RT1.156 for RT &lt; 2.0×104. These results are consistent with efficiency behavior reported in similar investigations on other types of turbomachines. Further, the design point flow coefficient increased over the range of Reynolds number investigated, while the design point head coefficient exhibited a maximum within this range. In addition, marked departure from scaling behavior occurred in the lower Reynolds number range. Finally, the correlation among torque coefficient, head coefficient, and flow coefficient previously established by the author was further verified and followed scaling behavior for the higher Reynolds number range.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Abhay Patil ◽  
Gerald Morrison

The goal of this study is to provide pump users a simple means to predict a pump's performance change due to changing fluid viscosity. During the initial investigation, it has been demonstrated that pump performance can be represented in terms of the head coefficient, flow coefficient, and rotational Reynolds number with the head coefficient data for all viscosities falling on the same curve when presented as a function of ф*Rew−a. Further evaluation of the pump using computational fluid dynamics (CFD) simulations for wider range of viscosities demonstrated that the value of a (Morrison number) changes as the rotational Reynolds number increases. There is a sharp change in Morrison number in the range of 104<Rew<3*104 indicating a possible flow regime change between laminar and turbulent flow. The experimental data from previously published literature were utilized to determine the variation in the Morrison number as the function of rotational Reynolds number and specific speed. The Morrison number obtained from the CFD study was utilized to predict the head performance for the pump with known design parameters and performance from published literature. The results agree well with experimental data. The method presented in this paper can be used to establish a procedure to predict any pump's performance for different viscosities; however, more data are required to completely build the Morrison number plot.


Author(s):  
C. Rodgers

The thrust of most recent advances in single– and two–stage centrifugal compressor technology by the aerospace community has been motivated by interest in increasing airbreathing propulsion system power density, and improving specific fuel consumption with higher stage pressure ratios. Advances in the last decade have made it appropriate to review the major design parameters influencing the efficiency levels of single–stage centrifugal compressors for aircraft applications. A simple efficiency correlation was derived for advanced single–stage centrifugal compressors. It was based upon four critical parameters: • Inlet Specific Speed • Impeller Tip Diameter • Inducer Tip Relative Mach Number • Exit Discharge Mach Number The correlation was shown to predict attainable state–of–the–art efficiencies within a band width of ± 2 % points. This was considered acceptable for preliminary compressor and engine design work.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
A. Hildebrandt ◽  
T. Ceyrowsky

This paper deals with the numerical and theoretical investigations of the effect of geometrical dimensions and one-dimensional (1D)-design parameters on the impeller pressure slope of a transonic centrifugal compressor stage for industrial process application. A database being generated during the multi-objective and multipoint design process of a high flow coefficient impeller, comprising 545 computational fluid dynamics (CFD) designs is investigated in off-design and design conditions by means of Reynolds-averaged Navier–Stokes (RANS) simulation of an impeller with vaneless diffuser. For high flow coefficients of 0.16 < ϕdes < 0.18, the CFD-setup has been validated against measurement data regarding stage and impeller performance taken from MAN test rig experimental data for a centrifugal compressor stage of similar flow coefficient. This paper aims at answering the question how classical design parameter, such as the impeller blade angle distribution, impeller suction diameter, and camber line length affect the local and total relative diffusion and pressure slope toward impeller stall operation. A second-order analysis of the CFD database is performed by cross-correlating the CFD data with results from impeller two-zone 1D modeling and a rapid loading calculation process by Stanitz and Prian. The statistical covariance of first-order 1D-analysis parameters such as the mixing loss of the impeller secondary flow, the slip factor, impeller flow incidence is analyzed, thereby showing strong correlation with the design and off-design point efficiency and pressure slope. Finally, guide lines are derived in order to achieve either optimized design point efficiency or maximum negative pressure slope characteristics toward impeller stall operation.


Sign in / Sign up

Export Citation Format

Share Document