Numerical Study of Pyrolysis Effects on Supercritical-Pressure Flow and Conjugate Heat Transfer of N-Decane in the Square Channel

Author(s):  
Xizhuo Hu ◽  
Zhi Tao ◽  
Jianqin Zhu ◽  
Haiwang Li

Regenerative cooling has become the most effective and practical method of thermal protection to the high temperature structures of scramjet engines. Pyrolytic reactions of endothermic hydrocarbon fuel have significant influence on the regenerative cooling process at high temperature due to a large amount of heat absorption and fluid components change. In this paper, a three-dimensional (3D) model is developed for numerically investigating the flow and heat transfer of pyrolytic reacted n-decane in the square engine cooling channel under supercritical pressure with asymmetrical heating imposed on the bottom channel surface. The one-step global pyrolytic reaction mechanism consisting of 18 species is adopted to simulate the pyrolysis process of n-decane. The governing equations for species continuum, momentum, energy and the k-ω turbulence equation are properly solved, with accurate computations of the thermophysical and transport properties of fluid mixture, which undergo drastic variations and exert strong impact on fluid flow and heat transfer process in the channel. The numerical method is validated based on the good agreement between the current predictions and the experimental data. Numerical studies of the pyrolysis effects on the characteristics of flow resistance and conjugate heat transfer under various operating conditions have been conducted. Results reveal that pyrolysis intensively takes place in high temperature regions. The pressure drop along the channel steeply rise due to the further fluid acceleration caused by pyrolysis. It is found that the variations of heat flux at the bottom, top and side fluid-solid-interface walls are totally different. Pyrolysis could lead to greater heat transfer enhancement at the bottom interface, consequently, more heat is transferred into the fluid region through the bottom interface. The dual effects of heat absorption and enhanced heat transfer caused by pyrolysis produce strong influence on the wall temperature. The mechanism of these physicochemical phenomena are also analyzed in detail, which is conducive to fundamentally understand the complicated physicochemical process of regenerative cooling. The present work has profound significance for the development of regenerative cooling technology.

Author(s):  
Chaofan Zhao ◽  
Xizhuo Hu ◽  
Jianqin Zhu ◽  
Zhi Tao

The regenerative cooling technology has become the most effective method to reduce the high-temperature of the scramjet engine. With physical and chemical heat sink, the endothermic hydrocarbon fuel has excellent performance in the regenerative cooling system of the scramjet engine which operates under extremely high temperature. The pyrolytic reactions not only absorb a large amount of heat, but also produce some kinds of coking precursors, mainly alkenes and aromatics. Because of the coking precursors and the coking reactions, a lot of coke would be generated on the wall and exert strong impact on the heat transfer, as the conductivity of the coke is much lower than that of the metal wall. Meanwhile, the surface coking changes the geometric parameters of the cooling tube, which leads to the flow field variations with the thickening coking layer. So, it is needed to find out the interaction between these variations. In this paper, a one-dimensional (1D) model has been developed to calculate the flow and heat transfer parameters distributions of the pyrolytically reacted RP-3 along the regenerative cooling tube with the pyrolytic coking. The 24-step pyrolytic reaction model and the coking kinetic model are applied to predict the pyrolysis and pyrolytic coking process of RP-3, with accurate computations of the physical properties of fluid mixture which undergo drastic variations during the transcritical process. Comparisons between the current predictions and the open published experimental data are carried out and good agreement is achieved. Calculations on the coupling relationships between the flow, heat transfer, pyrolysis and pyrolytic coking within 20 min in the circular tube have been conducted. With the heat flux increased, the coke mass is rising sharply and the temperature of the outer tube wall rises rapidly owing to the increasing thermal resistance of the coke layer. Moreover, the flow velocity becomes faster during the narrowing process of the tube caused by surface coking. In order to better understand the coking characteristics, further investigations on distributions of the surface coking under heat fluxes of 1.2–2.0MW/m2, pressures of 2.6–7.4 MPa and with inlet velocities of 0–5m/s have been performed. Results reveal that all these factors play an important role in the pyrolytic reactions and the coking rate distributions. The results in this paper have significant reference value in the design of the regenerative cooling system.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 94
Author(s):  
Guanming Guo ◽  
Masaya Kamigaki ◽  
Qiwei Zhang ◽  
Yuuya Inoue ◽  
Keiya Nishida ◽  
...  

This paper discusses the turbulent flow and heat transfer from a uniform air flow with high temperature to the outside through a 90° curved square pipe. Both conjugate heat transfer (CHT) simulation and experiments of temperature field measurements at cross sections of the pipe are performed. A straight pipe is investigated and compared with the 90° curved pipe. The temperature of the air flow at the inlet of the pipe is set at 402 K, and the corresponding Reynolds number is approximately 6 × 104. To obtain the spatial average temperature at each cross section, the temperature fields are measured along the streamwise of the pipes and in the circumferential direction using thermocouples at each cross section from the inlet to the outlet of both the straight and curved pipes. Furthermore, the simulation is performed for turbulent flow and heat transfer inside the pipe wall using the Re-normalization group (RNG) k-ε turbulence model and CHT method. Both the experimental and numerical results show that the curvature of the pipe result in a deviation and impingement in the high-temperature core and a separation between the wall and air, resulting in a secondary flow pattern of the temperature distribution.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
R. Maffulli ◽  
L. He ◽  
P. Stein ◽  
G. Marinescu

The emerging renewable energy market calls for more advanced prediction tools for turbine transient operations in fast startup/shutdown cycles. Reliable numerical analysis of such transient cycles is complicated by the disparity in time scales of the thermal responses in fluid and solid domains. Obtaining fully coupled time-accurate unsteady conjugate heat transfer (CHT) results under these conditions would require to march in both domains using the time-step dictated by the fluid domain: typically, several orders of magnitude smaller than the one required by the solid. This requirement has strong impact on the computational cost of the simulation as well as being potentially detrimental to the accuracy of the solution due to accumulation of round-off errors in the solid. A novel loosely coupled CHT methodology has been recently proposed, and successfully applied to both natural and forced convection cases that remove these requirements through a source-term based modeling (STM) approach of the physical time derivative terms in the relevant equations. The method has been shown to be numerically stable for very large time steps with adequate accuracy. The present effort is aimed at further exploiting the potential of the methodology through a new adaptive time stepping approach. The proposed method allows for automatic time-step adjustment based on estimating the magnitude of the truncation error of the time discretization. The developed automatic time stepping strategy is applied to natural convection cases under long (2000 s) transients: relevant to the prediction of turbine thermal loads during fast startups/shutdowns. The results of the method are compared with fully coupled unsteady simulations showing comparable accuracy with a significant reduction of the computational costs.


Author(s):  
H. X. Liang ◽  
Q. W. Wang ◽  
L. Q. Luo ◽  
Z. P. Feng

Three-dimensional numerical simulation was conducted to investigate the flow field and heat transfer performance of the Cross-Wavy Primary Surface (CWPS) recuperators for microturbines. Using high-effective compact recuperators to achieve high thermal efficiency is one of the key techniques in the development of microturbine in recent years. Recuperators need to have minimum volume and weight, high reliability and durability. Most important of all, they need to have high thermal-effectiveness and low pressure-losses so that the gas turbine system can achieve high thermal performances. These requirements have attracted some research efforts in designing and implementing low-cost and compact recuperators for gas turbine engines recently. One of the promising techniques to achieve this goal is the so-called primary surface channels with small hydraulic dimensions. In this paper, we conducted a three-dimensional numerical study of flow and heat transfer for the Cross-Wavy Primary Surface (CWPS) channels with two different geometries. In the CWPS configurations the secondary flow is created by means of curved and interrupted surfaces, which may disturb the thermal boundary layers and thus improve the thermal performances of the channels. To facilitate comparison, we chose the identical hydraulic diameters for the above four CWPS channels. Since our experiments on real recuperators showed that the Reynolds number ranges from 150 to 500 under the operating conditions, we implemented all the simulations under laminar flow situations. By analyzing the correlations of Nusselt numbers and friction factors vs. Reynolds numbers of the four CWPS channels, we found that the CWPS channels have superior and comprehensive thermal performance with high compactness, i.e., high heat transfer area to volume ratio, indicating excellent commercialized application in the compact recuperators.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1784
Author(s):  
Jiangyu Hu ◽  
Ning Wang ◽  
Jin Zhou ◽  
Yu Pan

Thermal protection is still one of the key challenges for successful scramjet operations. In this study, the three-dimensional coupled heat transfer between high-temperature gas and regenerative cooling panel with kerosene of supercritical pressure flowing in the cooling channels was numerically investigated to reveal the fundamental characteristics of regenerative cooling as well as its influencing factors. The SST k-ω turbulence model with low-Reynolds-number correction provided by the pressure-based solver of Fluent 19.2 is adopted for simulation. It was found that the heat flux of the gas heated surface is in the order of 106 W/m2, and it declines along the flow direction of gas due to the development of boundary layer. Compared with cocurrent flow, the temperature peak of the gas heated surface in counter flow is much higher. The temperature and heat flux of the gas heated surface both rises with the static pressure and total temperature of gas. The heat flux of the gas heated surface increases with the mass flow rate of kerosene, and it hardly changes with the pressure of kerosene. Results herein could help to understand the real heat transfer process of regenerative cooling and guide the design of thermal protection systems.


Author(s):  
Wei Huang ◽  
Eric Million ◽  
Kelvin Randhir ◽  
Joerg Petrasch ◽  
James Klausner ◽  
...  

Abstract An axisymmetric model coupling counter-current gas-solid flow, heat transfer, and thermochemical redox reactions in a moving-bed tubular reactor was developed. The counter-current flow enhances convective heat transfer and a low oxygen partial pressure environment is maintained for thermal reduction within the reaction zone by using oxygen depleted inlet gas. A similar concept can be used for the oxidation reactor which releases high-temperature heat that can be used for power generation or as process heat. The heat transfer model was validated with published results for packed bed reactors. After validation, the model was applied to simulate the moving-bed reactor performance, through which the effects of the main geometric parameters and operating conditions were studied to provide guidance for lab-scale reactor fabrication and testing.


Author(s):  
Piotr Łuczyński ◽  
Dennis Toebben ◽  
Manfred Wirsum ◽  
Wolfgang F. D. Mohr ◽  
Klaus Helbig

In recent decades, the rising share of commonly subsidized renewable energy especially affects the operational strategy of conventional power plants. In pursuit of flexibility improvements, extension of life cycle, in addition to a reduction in start-up time, General Electric has developed a product to warm-keep high/intermediate pressure steam turbines using hot air. In order to optimize the warm-keeping operation and to gain knowledge about the dominant heat transfer phenomena and flow structures, detailed numerical investigations are required. Considering specific warm-keeping operating conditions characterized by high turbulent flows, it is required to conduct calculations based on time-consuming unsteady conjugate heat transfer (CHT) simulations. In order to investigate the warm-keeping process as found in the presented research, single and multistage numerical turbine models were developed. Furthermore, an innovative calculation approach called the Equalized Timescales Method (ET) was applied for the modeling of unsteady conjugate heat transfer (CHT). The unsteady approach improves the accuracy of the stationary simulations and enables the determination of the multistage turbine models. In the course of the research, two particular input variables of the ET approach — speed up factor (SF) and time step (TS) — have been additionally investigated with regard to their high impact on the calculation time and the quality of the results. Using the ET method, the mass flow rate and the rotational speed were varied to generate a database of warm-keeping operating points. The main goal of this work is to provide a comprehensive knowledge of the flow field and heat transfer in a wide range of turbine warm-keeping operations and to characterize the flow patterns observed at these operating points. For varying values of flow coefficient and angle of incidence, the secondary flow phenomena change from well-known vortex systems occurring in design operation (such as passage, horseshoe and corner vortices) to effects typical for windage, like patterns of alternating vortices and strong backflows. Furthermore, the identified flow patterns have been compared to vortex systems described in cited literature and summarized in the so-called blade vortex diagram. The comparison of heat transfer in the form of charts showing the variation of the Nusselt-numbers with respect to changes in angle of incidence and flow coefficients at specific operating points is additionally provided.


Author(s):  
Jong-Shang Liu ◽  
Mark C. Morris ◽  
Malak F. Malak ◽  
Randall M. Mathison ◽  
Michael G. Dunn

In order to have higher power to weight ratio and higher efficiency gas turbine engines, turbine inlet temperatures continue to rise. State-of-the-art turbine inlet temperatures now exceed the turbine rotor material capability. Accordingly, one of the best methods to protect turbine airfoil surfaces is to use film cooling on the airfoil external surfaces. In general, sizable amounts of expensive cooling flow delivered from the core compressor are used to cool the high temperature surfaces. That sizable cooling flow, on the order of 20% of the compressor core flow, adversely impacts the overall engine performance and hence the engine power density. With better understanding of the cooling flow and accurate prediction of the heat transfer distribution on airfoil surfaces, heat transfer designers can have a more efficient design to reduce the cooling flow needed for high temperature components and improve turbine efficiency. This in turn lowers the overall specific fuel consumption (SFC) for the engine. Accurate prediction of rotor metal temperature is also critical for calculations of cyclic thermal stress, oxidation, and component life. The utilization of three-dimensional computational fluid dynamics (3D CFD) codes for turbomachinery aerodynamic design and analysis is now a routine practice in the gas turbine industry. The accurate heat-transfer and metal-temperature prediction capability of any CFD code, however, remains challenging. This difficulty is primarily due to the complex flow environment of the high-pressure turbine, which features high speed rotating flow, coupling of internal and external unsteady flows, and film-cooled, heat transfer enhancement schemes. In this study, conjugate heat transfer (CHT) simulations are performed on a high-pressure cooled turbine stage, and the heat flux results at mid span are compared to experimental data obtained at The Ohio State University Gas Turbine Laboratory (OSUGTL). Due to the large difference in time scales between fluid and solid, the fluid domain is simulated as steady state while the solid domain is simulated as transient in CHT simulation. This paper compares the unsteady and transient results of the heat flux on a high-pressure cooled turbine rotor with measurements obtained at OSUGTL.


Sign in / Sign up

Export Citation Format

Share Document